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1 Complex Analysis
A function defined on a set of complex numbers S is a rule which assigns to each z in S a unique
complex number w, denoted:

w = f (z)

Here z takes on values in S, and is called a complex variable. The set S is the domain of definition
of f (z).

Let u and v be the real and imaginary parts of w. Since w depends on z = x+ iy, and therefore on
x and y, so do u and v. We can therefore write

w = f (z) = u (x, y) + iv (x, y)

A complex function f (z) is equivalent to two real functions u (x, y) and v (x, y), each depending on
x and y.

Note that in order to have a well defined complex function, we must obey the unique mapping
fron z to f (z). For example, z̄ (the complex conjugate), is a valid function, since the mapping
x+ iy → x− iy produces a unique mapping for each (x, y).

Consider the function f (z) = z2 + 3z. What if we want to determine u (x, y) and v (x, y)?

We can write this out:

f (z) = (x+ iy)2 + 3 (x+ iy)
=

(
x2 + 2ixy − y2) + 3 (x+ iy)

=
(
x2 + 3x− y2) + i (2xy + 3y)

And thus we have that u (x, y) = x2 + 3x− y2 and v (x, y) = 2xy + 3y.

1.1 Analytic Functions
A function f (z) is analytic in a region of the complex plane if it has a unique derivative at every
point in the region.

What does it mean for f (z) to have a unique derivative? Let us compare this to a function g (x) of
a real variable. Let‘s say that the function is smooth, but it has a sharp point at x0. At every other
point, g (x) has a derivative, but at x0, g (x) does not have a derivative, the left and right handed
limits at x0 do not match. Let us now generalize this idea to functions in the complex plane.

This case is more complicated because instead of having just two directions of approach, we have a
2D plane, so we can approach from an infinite number of directions. In this case, we need every one
of these infinitely many directional limits to match, this is how we define a unique derivative for a
complex function.

How do we define the derivative of a complex function f (z)? We define it in the same way as we do
for real functions:

f ′ (z) = df

dz
= lim

∆z→0

∆f
∆z



PHYS610 Lecture Notes Hersh Kumar
Page 4

where ∆f = f (z − ∆z) and ∆z = ∆x+ i∆y.

The requirement for analyticity is incredibly stict, and is much more difficult to satisfy than the
real counterpart.

Let’s do a couple of examples. Consider the function f (z) = z2. Is this analytic?

Doing this from first principles:

d

dz

(
z2) = lim

∆z→0

(z + ∆z)2 − z2

∆z

= lim
∆z→0

z2 + 2z∆z + (∆z)2 − z2

∆z

= lim
∆z→0

2z∆z + (∆z)2

∆z
= lim

∆z→0
2z + ∆z

= 2z

Thus we see that, since the result is independent of the direction of ∆z, f (z) = z2 is indeed analytic.

What about the function f (z) = z̄?

df

dz
= lim

∆z→0

(z + ∆z) − z̄

∆z

= lim
∆x,∆y→0

(x+ ∆x) + i (y + ∆y) − (x+ iy)
∆x+ i∆y

= lim
∆x,∆y→0

∆x− i∆y
∆x+ i∆y

We can vary both ∆x and ∆y independently, and we note that the case where we approach along
∆y = 0 (the x-axis) and the case where we approach along ∆x = 0 (the y-axis) provide different
derivatives (+1 and −1 respectively). Therefore, the complex conjugate is not analytic.

What is the general condition a function f (z) has to satisfy in order to be analytic?

Theorem 1.1. Cauchy-Riemann conditions. If f (z) = u (x, y) + iv (x, y) is analytic in a given
region, then in that region:

∂u

∂x
= ∂v

∂y

∂u

∂y
= −∂v

∂x

These are the Cauchy-Riemann conditions.

Proof. We want to show that df
dz is defined and unique for all x and y.

Starting from the definition:

df

dz
= lim

δz→0

δf

δz
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Now we note that δz = δx+ iδy, and therefore δf = δu+ iδv. Thus:

δf

δz
= δu+ iδv

δx+ iδy

We now consider two approaches to the point (x, y), one that is parallel to the x-axis, and the other
that is parallel to the y-axis. We will show that the requirement that these two approaches are
equivalent will imply the Cauchy-Riemann conditions.

Approaching along δy = 0, We have that

lim
δz→0

δf

δz
= lim

δx→0

δu+ iδv

δx

= ∂u

∂x
+ i

∂v

∂x

Approaching along δx = 0:

lim
δz→

δf

δz
= lim

δy→0

δu+ iδv

iδy

= −i∂u
∂y

+ ∂v

∂y

Now we enforce the condition that these two are equal:

∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+ ∂v

∂y

Now separating the real and imaginary components:

∂u

∂x
= ∂v

∂y

∂u

∂y
= −∂v

∂x

Which are the Cauchy-Riemann conditions.

Now we note that the other direction is true, Cauchy-Riemann being satisfied imply analyticity.

Theorem 1.2. If u (x, y) and v (x, y) and their partial derivatives with respect to x and y are
continuous and satisfy the Cauchy-Riemann conditions in a region, then f (z) is analytic at all
points inside the region (though not necessarily on the border).

Proof. By definition:

δf = ∂f

∂x
δx+ ∂f

∂y
δy

=
Å
∂u

∂x
+ i

∂v

∂x

ã
δx+

Å
∂u

∂y
+ i

∂v

∂y

ã
δy
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From this:

δf

δz
=

(
∂u
∂x + i ∂v

∂x

)
δx+

Ä
∂u
∂y + i∂v

∂y

ä
δy

δx+ iδy

Now let us impose the Cauchy-Riemann conditions. We can replace terms in the numerator:

δf

δz
=

(
∂u
∂x + i ∂v

∂x

)
δx+

Ä
∂u
∂y + i∂v

∂y

ä
δy

δx+ iδy

=
(

∂u
∂x + i ∂v

∂x

)
δx+

(
− ∂v

∂x + i∂u
∂x

)
δy

δx+ iδy

We can now see that we are left with

δf

δz
=

(
∂u
∂x

)
(δx+ iδy) + i ∂v

∂x (δx+ iδy)
δx+ iδy

= ∂u

∂x
+ i

∂v

∂x

Note that this is independent of the direction chosen, and therefore we have analyticity.

Let us introduce some more definitions. A regular point of f (z) is a point at which f (z) is
analytic. A singular point of f (z) is a point at which f (z) is not analytic. It is denoted an
isolated singular point if f (z) is analytic everywhere else inside some small circle about the
singular point.

Theorem 1.3. If f (z) is analytic in a region, then it has derivatives of all orders at points inside
the region, which are then also analytic functions in that region.

We state this theorem without proof. We can use this theorem to infer an important conclusion
about the functions u (x, y) and v (x, y), they must have partial derivatives to all orders.

Consider the Cauchy-Riemann conditions:

∂u

∂x
= ∂v

∂y
(1)

∂u

∂y
= −∂v

∂x
(2)

Suppose we take the partial with respect to x of Equation 1, and the partial with respect to y of
Equation 2, and add them:

∂2u

∂y2 + ∂2u

∂x2 = 0
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This is Laplace’s equation in two dimensions. Any function u that is part of a complex function
f (z) must be a solution to the 2D Laplace’s equation. Similarly, we can take ∂

∂y of Equation 1 and
subtract the ∂

∂x of Equation 2, and we have the condition:

∂2v

∂x2 + ∂2v

∂y2 = 0

We need both of these to be true simultaneously, and is in part the reason that analyticity is a very
strict condition. Note that solutions to Laplace’s equation are known as harmonic functions, and
thus u (x, y) and v (x, y) must be conjugate harmonic functions.

Let us now study some real valued functions generalized to the complex plane. Some of these will be
analytic on the entire complex plane, denoting them entire functions. For example, all polynomials
of the form

f (z) = c0 + c1z + c2z
2 + . . . cnz

n

are entire functions.

A quotient of two polynomials p (z) and q (z) is called a rational function:

f (z) = p (z)
q (z)

These are analytic for every z for which q (z) is nonzero. A rational function of the form

c

(z − z0)m

where c is a constant, is known as a partial fraction.

Now let us consider the exponential function:

ez = ex+iy

exeiy

= ex (cos y + i sin y)

The exponential function is an entire function.

The trig functions are defined the same as they are on the real line, except that x is replaced with
x+ iy. The sine and cosine functions are entire, tangent and secant are analytic except where cosine
is 0, and cotangent and cosecant are analytic except where sine is 0.

We define the hyperbolic trig functions:

cosh z = 1
2
(
ez + e−z

)
sinh z = 1

2
(
ez − e−z

)
These are both entire functions.
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1.2 Branch Cuts
So far all the generalizations have been pretty well-behaved, but now we hit the first snag, when we
consider roots. Consider wn = z. Then w = z

1
n . We now show that for any non-zero z, there are n

distinct values of w. In polar coordinates, we have that

z = reiθ

and

w = Reiϕ

Now exponentiating w in the polar form:

wn = Rneinϕ

= z

= reiθ

Thus we have that Rn = r, and therefore R is the nth root of r, R = r
1
n . Also note that since both

r and R are real and positive, R is unique.

Now let us consider the phase terms, einϕ and eiθ. The condition for these two to be equal is:

nϕ = θ + 2πk

for any k ∈ Z. Thus we have that

ϕ = θ

n
+
Å
k

n

ã
2π

We see that ϕ takes on n values, with k = 0, 1, . . . , n − 1. Thus we see that when asking for the
nth root of z, there are n different valid roots. Why can we not just pick a principal root, such
as k = 0? Suppose we have θ ∈ [0, 2π), and picking k = 0. Then we have forced the nth root of z
to be single-valued. Now consider the value of z

1
n at a point just above the real axis. In this case,

θ ≈ 0, and therefore z
1
n = r

1
n . We can trace out a circle around the origin, and the value smoothly

changes as θ changes. However, as we approach the real axis from below, we see that the value of
the function approaches r

1
n ei 2π

n . We see that we have a sudden jump across the real axis. A region
in which the function’s value jumps suddenly like this is known as a branch point. In this case the
branch point is the positive real axis.

In fact, the branch cut singularity is unavoidable, we can shift the choice of k, and we will just
shift the branch cut. For example, suppose we restrict θ to lie between −π and π. In this case, the
branch cut will occur on the negative real axis, where θ wraps back around.

Let us now consider the logarithm. Suppose ew = z, and thus w = ln z. If we write z in polar form,
z = reiθ:

ln z = ln
Ä
reiθ
ä

= ln r + ln
Ä
eiθ
ä

= ln r + i (θ + 2πk)
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where k ∈ Z is an arbitrary shift to the angle. We see that, in general, ln z is multi-valued. We can
make it single valued by restricting the choice of k to a single value, such as k = 0, but then we
have a branch cut singularity.

To show this, let us restrict ourselves to k = 0 and −π < θ ≤ π. We see that if we look at the
negative real axis, we find that approaching from above gives us θ → π, and from below gives us
θ → −π. Thus w = ln r + iπ from above, and w = ln r − iπ from below, which does not match, and
thus we have a branch cut singularity.

We can also consider other functions, in which the singularity structure may be more complicated.
Consider the seemingly simple function

f (z) =
(
z2 − 1

)1/2

= (z + 1)1/2 (z − 1)1/2

We can see that we expect a branch cut starting at z = 1, as well as a branch cut starting at z = −1.
What is the singularity structure of the product of these two functions?

We claim that one of the allowed choices of a branch cut is the line between z = −1 and z = 1. Let
us determine whether or not this is true. First, let us write the two in polar form:

(z + 1) = reiθ

(z − 1) = ρeiϕ

Suppose we choose the range θ ∈ [0, 2π) and ϕ ∈ [0, 2π). Now, given these definitions, f (z) =√
ρrei(θ+ϕ)/2. Let us track the value of the phase component as we move along a path that goes

around our two points (and doesn’t intersect where we claim the branch cut is). We are looking for
sudden jumps in the value of the phase, which would indicate a branch cut.

We can obtain the values of θ by measuring the angle from the point z = −1, and obtain the value
of ϕ by measuring the angle from the point z = +1. After doing so, we can compute the phase on
the product. We then look for sharp discontinuities when transitioning from above to below the
axis, or vice versa. We see that we have no discontinuities past z = 1 or before z = −1, and we
have discontinuities when transitioning between the two. This validates our choice of a branch cut
lying between z = −1 and z = +1.

What if we make a different choice of our restrictions? Can we change the location of the branch
cut?

Suppose we choose θ ∈ [−π, π], and leave the ϕ restriction the same. First, are we allowed to pick
the ranges of the two angles to be different from each other? To show that we can, suppose we write
the two subfunctions as follows:

√
z − 1 = R−e

iθ−

√
z + 1 = R+e

iθ+

And we can square both of these:

z − 1 = R2
−e

2iθ−
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z + 1 = R2
+e

2iθ+

Note that we can consistently change θ− by π, and both formulas are still valid. Thus, we are
allowed to choose the phases arbitrarily. This means that we can change the cut structure by making
different choices for the ranges of θ and ϕ. If we return to the choice where θ ∈ [−π, π), we will find
that we have branch cuts before z = −1 and ater z = +1, but no branch cut in between.

1.3 Line Integrals
Consider a line integral of a function f (z) from a point A to a point B in the complex plane. Under
what circumstances is the value of this integral

´ B
A f (z) dz independent of the path taken from A

to B.

Theorem 1.4. Cauchy’s Theorem. If f (z) is analytic in a simply connected, bounded domain D.
For every simple closed path C in D: ˛

C
f (z) dz = 0

Where
¸

denotes the fact that C is a closed path. A simply connected domain implies that any closed
curve in the domain can be shrunk to a point without leaving the domain D.

Proof. We can write out the integral:˛
C
f (z) dz =

˛
C

(u+ iv) (dx+ idy)

=
˛

C
(u dx− v dy) + i

˛
C

(v dx+ u dy)

Now applying Stoke’s theorem: ˛
A · dr =

ˆ
(∇ × A) · ds

Let us attempt to map the line integrals that we have into the form of Stoke’s theorem. In the
plane, dr = dxx̂+ dyŷ, and A = Axx̂+Ayŷ. Rewriting Stoke’s theorem:

˛
C

(Ax dx+Ay dy) =
ˆ Å

∂Ay

∂x
− ∂Ax

∂y

ã
dx dy

Now let us compare the left side of this equation to the line integrals that we have. We see that if
we choose Ax = u and Ay = −v, we have a perfect mapping for the real line integral. On the right
side of Stoke’s theorem, we will have:˛

C
(u dx− v dy) =

ˆ Å
−∂v

∂x
− ∂u

∂y

ã
︸ ︷︷ ︸

0

dx dy

Now we note that by the Cauchy-Riemann conditions (1.1), this right integral is 0, and therefore the
line integral is also 0. For the imaginary line integral, we see that again, by the Cauchy-Riemann
conditions (1.1), Stoke’s theorem tells us that the integral will be 0. Thus we have that both line
integrals will be 0, and thus the integral over the closed contour C is 0. Note that the requirement
that the domain be simply connected is in place because Stoke’s theorem requires the existence of
the partial derivatives of u and v.
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We wanted to find out whether the line integral between two points is independent of the path
chosen: ˆ

C1

f (z) dz =
ˆ

C2

f (z) dz

This is implied by Cauchy’s theorem, since we can form a closed path by following C1 to B, and
then the inverse of C2 back to A. The integral over this closed contour must be 0, and therefore the
two integrals must be equal and opposite. Thus the original line integrals must be equivalent.

Because of Cauchy’s theorem , we can actually treat integrals as functions:
ˆ z

a
f (z) dz = F (z)

This is a function of only z, since it is independent of the path that we choose from point a to z.

1.4 Cauchy’s Integral Formula
Cauchy’s integral formula is a theorem that allows us to obtain the value of an analytic function
anywhere inside a simply connected domain, as long as we know its value everywhere on the
boundary of the domain. This is incredibly powerful, and is due to the fact that f (z) = u + iv,
where u and v are both solutions of Laplace’s equation.

Theorem 1.5. Cauchy’s Integral Formula. If f (z) is analytic in a simply connected domain D,
then for any point z = a in D and any closed path C in D which encloses the point a:

˛
C

f (z)
z − a

dz = 2πif (a)

Where the integration is taken in the counter-clockwise sense.

Proof. Let us define ϕ (z) = f(z)
z−a . This is analytic everywhere in D except z = a. What we want to

evaluate is: ˛
ϕ (z) dz

This does not immediately integrate to 0 because of the fact that the function is not analytic at
z = a. Consider a new contour inside C, C ′, which is an arbitrarily small circle around z = a.
We now introduce a “cut”, that joins C and C ′. This closed contour essentially cuts out z = a, it
contains all the points other than z = a. Thus, ϕ (z) is completely analytic in this region. Note that
the cut goes around z = a in a clockwise manner.

For this new contour,
˛

Cnew

ϕ (z) dz = 0

by Cauchy’s theorem (1.4). Now we note that the net contributions of the cuts that connect C to
C ′ vanish as we make them infinitely close to each other. What we are left with is the contribution
from the outer contour and the contribution from the circle around z = a:˛

C
ϕ (z) dz +

˛
C′
ϕ (z) dz = 0
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Note that the integral around C is counterclockwise, and the integral around C ′ is clockwise. Thus
we have that ˛

C
ϕ (z) dz =

˛
C′
ϕ (z) dz

Where we have now made the integral around C ′ go counterclockwise, which cancels out the negative
that is introduced. Now let us attempt to compute the right integral. The equation for a circle
centered at z = a of radius ρ is given by

z − a = ρeiθ

And thus |z − a| = ρ. We can compute the integral:
˛

C′
ϕ (z) dz =

˛
C′

f (z)
z − a

dz

=
ˆ 2π

0

f (z)
ρeiθ

Ä
iρeiθ dθ

ä
= i

ˆ 2π

0
f (z) dθ

Now we take the radius of the circle to be infinitely small, which allows us to replace f (z) with
f (a):

˛
C

f (z)
z − a

dz = 2πif (a)

1.5 Laurent Series
Theorem 1.6. Laurent‘s Theorem. Let C1 and C2 be two circles centered at z0. Let f (z) be
analytic in the region R between the circles. Then f (z) can be expanded in a series of the form
(denoted a Laurent Series)

f (z) = a0 + a1 (z − z0) + a2 (z − z0)2 + . . .︸ ︷︷ ︸
Taylor Series

+

Principal Part︷ ︸︸ ︷
b1

(z − z0) + b2

(z − z0)2 + . . .

This series converges and represents f (z) in the open annulus obtained from the given annulus by
continuously increasing the circle C1 (the outer boundary) and decreasing C2 (the inner boundary)
until each of the two circles reaches a point where f (z) is singular.

Essentially, this is a Taylor series that contains the negative powers as well. We can increase the
size of the annulus as much as we want, as long as neither of the boundaries pass through a singular
point.

Note that if f (z) is analytic at z = z0, we find that in the region that contains z0, the principal
part of the series vanishes.
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We also state a related property:
˛

dz

(z − z0)n =
®

2πi if n = 1
0 otherwise

(3)

Using this result, we can determine the coefficients of the series:

an = 1
2πi

˛
f (z)

(z − z0)n+1 dz

bn = 1
2πi

˛
f (z)

(z − z0)−n+1 dz

This is generally not the way that the Laurent series is found in practice.

Let us do a couple of examples. Consider the function f (z) = z2e1/z. Find the Laurent series of
f (z) centered at z = 0.

First we note that the function is not analytic at z = 0, due to the e1/z, and thus z = 0 is a sinular
point. This implies that the principal part of the Laurent series will not vanish.

Using the fact that

ez = 1 + z + z2

2 + z3

3! + . . .

We can write out f (z):

z2e1/z = z2
ï
1 + 1

z
+ 1

2
1
z2 + 1

3!
1
z3 + . . .

ò
= z2 + z + 1

2 + 1
3!

1
z

+ . . .

This converges for ∀z such that |z| > 0, everywhere except for the point we are expanding about.

Let us do another example. What is the Laurent series of f (z) = 1
1−z2 centered at z = 1?

Immediately we see that the function has singularities at z = ±1, and if we are centered at z = 1,
we have 2 Laurent series. We have a circle centered at z = 1, and it passes through z = −1. Inside
the circle we have 1 Laurent series, and outside the circle we have another. We can rewrite f (z):

1
1 − z2 = 1

1 − z

1
1 + z

= − 1
z − 1

1
z + 1

Now we note that we are looking for a series in powers of z − 1, so all we have to do is to expand
1

z+1 in powers of z − 1:

1
z + 1 = 1

2 + (z − 1)

= 1
2

ñ
1

1 + z−1
2

ô
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We do this so we can exploit the binomial expansion:

1
(1 + x)n = 1 − n+ n (n+ 1)

2 x2 + . . .

Which has the condition that |x| < 1. Applying this, in the case where
∣∣ z−1

2
∣∣ < 1, which is the same

as |z − z| < 2, we can expand binomially:

1
z + 1 = 1

2

∞∑
n=0

(−1)n
Å
z − 1

2

ãn

=
∞∑

n=0

(−1)n

2n+1 (z − 1)n

Now tacking on the − 1
z−1 to recover f (z):

1
1 − z2 = − 1

z − 1

∞∑
n=0

(−1)n

2n+1 (z − 1)n

=
∞∑

n=0

(−1)n+1

2n+1 (z − 1)n−1

This is the the Laurent series inside the circle (because the binomial expansion happens to impose
that condition). To find the Laurent series outside the circle, we return to the rewritten form of

1
1+z :

1
1 + z

= 1
2

ñ
1

1 +
(

z−1
2
)ô

= 1
z − 1

ñ
1

1 + 2
z−1

ô
We see that we can expand out the second term binomially, which imposes the condition that
|z − 1| > 2, which is exactly the condition that we want, z that is outside of the circle.

1
1 + z

= 1
z − 1

∞∑
n=0

(−1)n
Å 2
z − 1

ãn

=
∞∑

n=0
(−1)n 2n

(z − 1)n+1

We can now add back in the 1
z−1 :

f (z) = − 1
z − 1

∞∑
n=0

(−1)n 2n

(z − 1)n+1

=
∞∑

n=0
(−1)n+1 2n

(z − 1)n+2

Giving us the second Laurent series for f (z).
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Let us now look at another function. Consider f (z) = 12
z(2−z)(1+z) . We want to find all of the

Laurent series of this function, centered at z = 0.

To begin, we find the singular points of f (z). We have 3 singular points, z = 0, 2,−1. We expect to
have 3 Laurent series, one valid in the regime where |z| < 1, another between 1 < |z| < 2, and a
third outside, |z| > 2.

We can rewrite the function:

f (z) = 12
z (2 − z) (1 + z)

= 1
z

ï 12
(2 − z) (1 + z)

ò
We want to expand the contents of the brackets in terms of powers of z, since we are centered at
z = 0. To do this, we use partial fraction decomposition:

12
(2 − z) (1 + z) = 4

ï 1
2 − z

+ 1
1 + z

ò
Now we can expand each of the two separate partial fractions as binomial series. In the case where
|z| < 1, we can write out 1/ (1 + z):

1
1 + z

=
∞∑

n=0
(−1)n zn

And we can write out 1/ (2 − z):

1
2 − z

= 1
2

1
1 − z

2

= 1
2

∞∑
n=0

(z
2

)n

=
∞∑

n=0

zn

2n+1

Thus, for |z| < 1:

f (z) = 4
z

ñ ∞∑
n=0

(−1)n zn +
∞∑

n=0

zn

2n+1

ô
=

Now let us consider the outermost region, where |z| > 2. We can once again binomially expand:

1
1 + z

= 1
z

ñ
1

1 + 1
z

ô
= 1
z

∞∑
n=0

(−1)n 1
zn
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=
∞∑

n=0
(−1)n 1

zn+1

And we can expand 1/ (2 − z):

1
2 − z

= 1
z

ñ
−1

1 − 2
z

ô
= −1

z

∞∑
n=0

Å2
z

ãn

=
∞∑

n=0
− 2n

zn+1

Putting these together:

f (z) = 4
z

ñ ∞∑
n=0

(−1)n 1
zn+1 +

∞∑
n=0

− 2n

zn+1

ô
= 4
z

ñ ∞∑
n=0

− [−2n − (−1)n] 1
zn+1

ô
Now we only have the intermediate region left. We did it in this particular order because we can use
one expansion from each of the two regions that we have already done (based on the valid region of
each expansion). For 1 < |z| < 2, we have

1
1 + z

=
∞∑

n=0
(−1)n 1

zn+1

1
2 − z

=
∞∑

n=0

zn

2n+1

Putting these two together:

f (z) = 4
z

ñ ∞∑
n=0

(−1)n 1
zn+1 +

∞∑
n=0

zn

2n+1

ô
Thus we have found all 3 Laurent series for the function.

By looking at the principal part of the Laurent series, we can state some more definitions. If a
single term in the principal part is nonzero, and the rest are zero, suppose the order nth term, then
f (z) is said to have a pole of order n at z0. If n = 1, it is denoted a simple pole.

If all of the bns vanish, then f (z) is analytic at z0. If an infinite number of the bns are nonzero,
then we say that f (z) has an essential singularity at z = z0.

The coefficient b1 is known as the residue of f (z) at z0.

Theorem 1.7. Liouville‘s Theorem. If f (z) is analytic and bounded in absolute value for all z in
the complex plane, then it must be a constant.
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Before we begin the proof, we introduce some statements that are useful:

|ab| = |a||b|

To prove this statement, we note that a = |a|eiθ, and b = |b|eiϕ. From this, we immediately find that

ab = |a||b|ei(θ+ϕ)

And therefore |ab| = |a||b|.

The second useful property is that

|a+ b| ≤ |a| + |b|

Proof. Assume that |f (z) | is bounded, so that |f (z) | < M for all z. Since f (z) is analytic, by
Laurent’s theorem (1.6) it can be expanded: f (z) =

∑∞
n=0 anz

n. Note that we don’t have negative
powers of n because the function is analytic everywhere. Now using (3):

an = 1
2πi

˛
C

f (z)
zn+1 dz

The contour in this case is a circle of radius R centered at the origin. Now we take the absolute
value of both sides:

|an| =
∣∣∣∣ 1
2πi

˛
C

f (z)
zn+1 dz

∣∣∣∣
=

∣∣∣∣ 1
2πi

∣∣∣∣ ∣∣∣∣˛
C

f (z)
zn+1 dz

∣∣∣∣
Now imagine we break up the integral into an infinite sum over the path elements m:

|an| =
∣∣∣∣ 1
2πi

∣∣∣∣
∣∣∣∣∣∑

m

f (zm)
zn+1

m
∆zm

∣∣∣∣∣
Now noting that |a+ b| ≤ |a| + |b|, we have that (working in the limit where m → 0)

|an| ≤ 1
2π

ñ∑
m

∣∣∣∣f (zm)
zn+1

m
∆zm

∣∣∣∣
ô

≤ 1
2π

∑
m

|f (zm) |
|zm|n+1 |∆zm|

Recall that we are travelling around a circle of radius R, so at every point on the contour, |zm| = R.

|an| ≤ 1
2π

∑
m

|f (zm) |
Rn+1 |∆zm|

As we move around the circle, at some point, f (zm) will take on a maximum value. Thus this
statement must be less than the case where every point is the maximum value:

|an| ≤ 1
2π

∑
m

|f (z) |max
Rn+1 |∆zm|
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≤ 1
2π

|f (z) |max
Rn+1

∑
m

|∆zm|

Now noting that
∑

m |∆zm| = 2πR:

|an| ≤ 1
2π

|f (z) |max
Rn+1 (2πR)

≤ |f (z) |max
Rn

Now since we assumed that f (z) was bounded by M , |f (z) |max must be less than M :

|an| ≤ M

Rn

Now consider taking the limit as R → ∞. We see that this forces |an| to 0 for n > 0, and since the
coefficients of the expansion other than a0 are 0, the function must be constant.

1.6 Residue Theorem
Theorem 1.8. Residue Theorem. Let z0 be an isolated singular point of f (z). Consider the value
of
¸

C f (z) dz around a simple closed curve C surrounding z0, but enclosing no other singularities.
Let f (z) be expanded in a Laurent series about z = z0 so that it converges near z = z0.

f (z) = a0 + a1 (z − z0) + · · · + b1
z − z0

+ b2

(z − z0)2 + . . .

The terms of the “a series” do not contribute to the integral, because they are analytic by Cauchy‘s
theorem (1.4). By (3), the only one of the terms in the “b series” that contributes is the order 1
term: ˛

C
f (z) dz = 2πib1

Now consider the situation where the contour contains several isolated singularities, not just one.
In this case, we can draw contours around each singularity, and then use the same trick that we
did for Cauchy’s Integral Formula, and we introduce slices that merge all of the contours. The
contributions of the slices cancel. We are left with the sum of all of the residues inside the region:

˛
C
f (z) dz = 2πi [sum of residues inside C]

Let‘s do an example. Consider the function f (z) = sin z
z4 . We want to integrate this function around

the unit circle going counter-clockwise.

We can first write this as a Laurent series around the origin:

sin z
z4 = 1

z4

ï
z − z3

3! + z5

5! − . . .

ò
= 1
z3 − 1

6
1
z

+ z

5! + . . .



PHYS610 Lecture Notes Hersh Kumar
Page 19

The only singularity of f (z) is at z = 0, and the residue is −1
6 . By the residue theorem (1.8):

˛
C

sin z
z4 dz = 2πi

Å
−1

6

ã
= −πi

3

Now let us consider the function f (z) = 4−3z
z2−z

around the circle |z| = 2.

The function has singularities at z = 0 and z = 1. First, we note that both singularities are inside
the contour, and thus are both important.

Near z = 0:

f (z) = 4 − 3z
z (z − 1)

≈ −4
z

+ smooth

From this, we have that the residue of f (z) near z = 0 is −4.

Similarly, near z = 1:

f (z) = 4 − 3z
z (z − 1)

≈ +1
z − 1 + smooth

And we see that the residue of f (z) near z = 1 is +1.

Now applying the residue theorem (1.8):
˛ 4 − 3z

z2 − z
dz = 2πi [−4 + 1]

= −6πi

Now consider the integral:

I =
ˆ 2π

0

1
5 + 4 cos θ dθ

This integral requires a difficult substitution (tan θ
2), so instead, let us change variables to a complex

variable, z = eiθ. When θ goes from 0 to 2π, our angle goes around the unit circle. Computing the
change of variables:

dz = ieiθ

= iz dθ

From this, we have that dθ = 1
i

dz
z . Using Euler’s formula, we have that

cos θ = 1
2

Å
z + 1

z

ã
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Now rewriting the integral:

I =
˛

unit circle

1
5 + 2

(
z + 1

z

) 1
iz
dz

= 1
i

˛ 1
2z2 + 5z + 2

= 1
i

˛
dz

(2z + 1) (z + 2)

This function has poles at z = −2 and z = −1
2 . We note the pole at z = −2 does not contribute, it

is outside the contour. Thus, by the residue theorem (1.8), we just need the residue at z = −1
2 , so

we consider the function near −1
2 :

f

Å
z → −1

2

ã
= 1

(2z + 1) (z + 2)

≈
1
3(

z + 1
2
)

Thus we have a residue of 1
3 . By the residue theorem (1.8):

I =
Å1
i

ã
2πi
Å1

3

ã
= 2π

3

Let‘s do another example. Consider the integral:

I =
ˆ ∞

−∞

dx

1 + x2

This is a standard integral, I = arctan (x)
∣∣∞
−∞= π. However, let us do this for illustrative purposes.

How do we map this integral into the complex plane? Consider the complex line integral

lim
ρ→∞

ˆ ρ

−ρ

1
1 + z2

Where the path is along the real line, so the two integrals are identical. Note that this is not a
closed line integral, and therefore we cannot apply the residue theorem directly.

Now consider a circle of radius ρ, centered at the origin. The points of this circle that lie on the
real axis are z = −ρ and z = ρ. Consider the closed contour that starts at −ρ, travels along the
real line, and then follows the upper semicircle to end up at −ρ.

Now let us integrate the function around this new closed contour:
˛

dz

1 + z2

Note that we can now apply the residue theorem.

The point of this is to note that the contour integral is made up of two parts, the real axis
contributions, and the contributions from the semicircle. What we will show is that the contributions
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of the integral along the semicircle vanish, and we will be left with just the integral along the real
axis, which is what we wanted.

The function 1
1+z2 has simple poles at z = ±i. Only one of these poles is in the contour that we

care about, z = +i. Near z = +i:

f (z → +i) = 1
1 + z2

≈ 1
2i

1
z − i

And so we have a residue of 1
2i . By the residue theorem (1.8):

˛
dz

1 + z2 = 2πi
Å 1

2i

ã
= π

Now we need to argue that the contributions on the semicircle vanish. We can separate out the
integral:

˛
dz

1 + z2︸ ︷︷ ︸
π

=
ˆ

real

dz

1 + z2︸ ︷︷ ︸
I

+
ˆ

semicircle

dz

1 + z2

To evaluate the contributions on the semicircle, consider z = ρeiθ, with constant ρ, and θ = 0 → π.
In this case, dz = iρeiθ dθ = iz dθ. This turns the semicircle integral into:

ˆ
semicircle

dz

1 + z2 =
ˆ π

0

iρeiθ dθ

1 + ρ2e2iθ

Now consider the absolute value of both sides:∣∣∣∣ˆ
semicircle

dz

1 + z2

∣∣∣∣ =
∣∣∣∣∣
ˆ π

0

iρeiθ dθ

1 + ρ2e2iθ

∣∣∣∣∣
Looking at the right side, and using similar logic as in our proof of Liouville‘s theorem:∣∣∣∣∣

ˆ π

0

iρeiθ dθ

1 + ρ2e2iθ

∣∣∣∣∣ ≤
ˆ π

0

∣∣iρeiθ
∣∣

|1 + ρ2e2iθ|
|dθ|

As ρ → ∞, the integrand scales like 1
ρ :∣∣∣∣∣

ˆ π

0

iρeiθ dθ

1 + ρ2e2iθ

∣∣∣∣∣ ≤ 1
ρ
π

→ 0 as ρ → ∞

And thus the contribution of the integral along the semicircle vanish as we approach the infinite
bounds.

Let us consider another example. Suppose we want to evaluate the integral

I =
ˆ ∞

0

cosx
1 + x2 dx
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First, we note that the integrand is even, so we can write it as half of the integral over the entire
real line:

I = 1
2

ˆ ∞

−∞

cosx
1 + x2 dx

Now using the same technique as the previous problem:

I = 1
2

ˆ
C

cos z
1 + z2 dz

Where C is the entire real line. Now we note that we can rewrite the integral as the real part of a
complex integral:

I = Re
ñ

1
2

ˆ
C

eiz

1 + z2 dz

ô
Now we create a closed contour like we did in the previous example, creating a semicircle in the
upper half of the complex plane. We now are evaluating the integral:

1
2

˛
eiz

1 + z2 dz

We first find the singularities of this function, which are z = ±i. Only one of these poles is in the
contour, z = +i. We can compute the residue at that pole, by seeing what happens near z = +i:

1
2

e−1

2i (z − i)

Which gives us residue 1
4ie . This gives us, by the Residue Theorem (1.8):

1
2

˛
eiz

1 + z2 dz = π

2e

Now we have to show that the contribution of the semicircle contour vanishes. Looking at the
integrand, suppose we have z = ρeiθ = ρ cos θ+ ρ sin θ, where ρ → ∞. We can rewrite the integrand:

eiz

1 + z2 = eiρ cos θe−ρ sin θ

1 + z2

In the entire half plane, θ is between 0 and π, and sin θ is therefore positive, so e−ρ sin θ → 0 as
ρ → ∞. Thus we have that the integral of the semicircle contour vanishes.

Note that if we looked at the lower half plane, sin θ would be negative, and thus the contour would
blow up. If we really wanted to use the lower half plane, we could have written the integral as the
real part of the integral of e−iz, which produces the same result but would cause the lower semicircle
contour to vanish.

Now let us consider another example. Suppose we have the integral

I =
ˆ ∞

0

rp−1

1 + r
dr



PHYS610 Lecture Notes Hersh Kumar
Page 23

Where p ∈ (0, 1).

Turning this into a complex integral:

I =
ˆ

C

zp−1

1 + z
dz

Where C is the positive real line. Note that since we have a fractional power of z, there is no way of
having this be single-valued. We write z = Reiθ, so zp−1 = Rp−1eiθ(p−1). If we go around θ → θ+2π,
zp−1 becomes Rp−1eiθ(p−1)ei2π(p−1). This is the expected phase that gives us a multi-valued function.
zp−1 has a branch cut, which we take along the positive x axis.

We are integrating along θ = 0, the positive real axis. Now we want to choose the contour that we
are integrating along. We choose the contour that integrates around everything except the branch
cut (a Pacman shape that avoids the branch cut). We will show that the contribution from the
circle vanishes, and the contribution from the integral we want, and neither does its analogue below
the branch cut.

We can write out the integral along the circle:
ˆ

circle

Rp−1eiθ(p−1)

1 +Reiθ
Reiθ (i dθ)

Now if we take the absolute value of the integrand:
ˆ

circle

∣∣∣∣∣Rp−1eiθ(p−1)

1 +Reiθ
Reiθ

∣∣∣∣∣ (i dθ)

We see that
∣∣Rp−1∣∣ → 0 as R → ∞, and thus the integral over the circle contour vanishes.

Now let us consider the section of the contour that we are trying to evaluate. We have that θ = 0,
and we have the integral:

ˆ ∞

0

rp−1

1 + r
dr

Along the contour from ∞ to 0 along the real axis from underneath the branch cut, we have that
θ = 2π, so z = rei(2π), so this gives the integral:

ˆ 0

∞

(
re2πi

)p−1

1 + r
dr = −

ˆ ∞

0

rp−1e2πip

1 + r

= −e2πip

ˆ ∞

0

rp−1

1 + r
dr

The total contribution from the two sections along the branch cut is given by

[
1 − e2πip

]ˆ ∞

0

rp−1

1 + r
dr︸ ︷︷ ︸

I

Where we see that we can extract the value of the integral that we are trying to compute.
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Since the whole thing is a closed contour, we can evaluate the total integral using the residue
theorem, and then solve for the value of I.

We want to compute
˛

zp−1

1 + z
dz

We see that we have a simple pole at z = −1, which is inside the contour that we are integrating
around. We can rewrite z = −1 as eiπ. Computing the residue around z = −1, we see that

zp−1

1 + z
→ eiπ(p−1)

1 + z

So we have a residue of eiπ(p−1). By the Residue Theorem (1.8):
˛

zp−1

1 + z
dz = −2πieiπp

Thus we have that

−2πieiπp =
[
1 − e2πip

]ˆ ∞

0

rp−1

1 + r
dr︸ ︷︷ ︸

I

I = π

sin (πp)

Consider the integral:

I =
ˆ ∞

−∞

eax

1 + ex
dx

For a ∈ (0, 1).

If we change x to z, the denominator would be 1 + ez. Let us consider what the poles would be. We
would have poles at z = ±iπ, πi (3π) ,±i (5π) , . . . . We see that we have an infinite number of poles.
To avoid this problem, we choose the contour that forms a rectangle in the upper complex plane,
with height 2π. The base and top of the rectangle extend out from −∞ to ∞.

We will show that the contribution from the sides vanishes. The left side ranges from z = (−R, 0)
to z = (−R, 2πi), and the right side ranges from z = (R, 0) to z = (R, 2πi), and we take the limit
as R → ∞. We can split up the contour integral that we claim remains:

˛
eaz

1 + ez
dz = lim

R→∞


ˆ R

−R

eax

1 + ex
dx︸ ︷︷ ︸

Real Axis

−
ˆ R

−R

eax

1 + ex
e2πia dx︸ ︷︷ ︸

Top Contour


Where the e2πia is the overall phase that is picked up on the upper line parallel to the real axis.

Pulling the phase out, we have that˛
eaz

1 + ez
dz =

(
1 − e2πia

) ˆ ∞

−∞

eax

1 + ex
dx︸ ︷︷ ︸

I
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We see that we can again extract the value of the integral that we want to compute.

Let us now compute the contour integral using the Residue theorem. We have 1 pole in the contour,
z = +iπ. Looking at the denominator, we have

1 + ez = 1 + ez−iπeiπ

= 1 − ez+iπ

= − (z − iπ) − 1
2 (z − iπ)2 + . . .

Near z = iπ, the integrand is:

eaz

1 + ez
= ea(iπ)

− (z − iπ)

Which gives residue −eiπa. By the Residue Theorem (1.8):
˛

eaz

1 + ez
dz = 2πieiπa

(
1 − e2πia

) ˆ ∞

−∞

eax

1 + ex
dx︸ ︷︷ ︸

I

= 2πi
(
eiπa

)
I = π

sin (πa)

Now let us return to the sides of the contour. Consider the absolute value of the integrand along
the right side: ∣∣∣∣ eaz

1 + ez

∣∣∣∣
z=R+iθ

=
 

eazeaz

(1 + ez) (1 + ez)
∣∣
z=R+iθ

=
 

e2aR

1 + eR (2 cos θ) + e2R

In the limit of R → ∞, this is dominated by 1
e2R(1−a) , which vanishes.

Looking at the absolute value of the left side integral:∣∣∣∣ eaz

1 + ez

∣∣∣∣
z=−R+iθ

=
 

eazeaz

(1 + ez) (1 + ez)
∣∣
z=−R+iθ

=
 

e−2aR

1 + e−R (2 cos θ) + e−2R

Once again taking the R → ∞ limit, we have
√
e−2aR, which vanishes. Thus, the integral along

both side contours vanishes, and our result is correct.

Note that the solution to this problem is very similar to the solution to the previous integral. What
we can show is that there is a change of variables that can be used to map the two integrals into
each other. If we set ex = r, then ex dx = dr, and so we can insert this into the integral:

ˆ ∞

−∞

eax

1 + ex
dx =

ˆ ∞

−∞

(ex)a

1 + ex
dx
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=
ˆ ∞

0

ra

1 + r

dr

r

=
ˆ ∞

0

ra−1

1 + r
dr

We see that through a simple substitution, we can map the two problems into each other.

Consider the integral

I =
ˆ ∞

−∞

sin x
x

dx

Consider the region on the real line bounded by x = −ϵ and x = ϵ. We will show that as we take
the limit ϵ → 0, the contribution by the bounded region will be −1. Let us consider the integral of
just the bounded region:

ˆ ϵ

−ϵ

sin x
x

dx =
ˆ ϵ

−ϵ

ï
1 − x2

3! + x4

5! + . . .

ò
dx

Where we have expanded the sin as a Taylor series. We note that this integral is equal to 2ϵ+O
(
ϵ2
)
.

We see that the contribution from points near x = 0 vanishes as ϵ → 0. We can then consider the
original integral, and cut out the region that we know vanishes:

ˆ ∞

−∞

sin x
x

dx = lim
ϵ→0

ïˆ ϵ

−∞

sin x
x

dx+
ˆ ∞

ϵ

sin x
x

dx

ò
Consider the following contour integral:

˛
C

eiz

z
dz

Where the contour is a half-annulus centered around the origin with outer radius R and inner radius
ϵ. This is essentially a semicircle with the ϵ bounded region cut out. We see that the imaginary
contribution to this integral along the real line is exactly the remaining portion of the integral that
we wish to solve. Note that, by the Residue Theorem (1.8), there are no poles inside the contour
and therefore the total integral is 0. We will show that the outer circle contribution vanishes, and
thus the integral over the real line and the integral over the inner semicircle must sum to zero. We
will compute the inner semicircle integral, and then we will immediately know the contribution of
the section along the real line.

To show that the outer circle contribution vanishes, write z = Reiθ, and note that for an upper
semicircle, θ ∈ (0, π]. We can write out the function:

eiz

z
= eiR cos θe−R sin θ

Reiθ

And we note that e−R sin θ → 0 as R → ∞, and thus the contribution vanishes.

Now we have to compute the inner circle contribution. On this semicircle, we have that z = ϵeiθ,
where θ starts at π, and goes to 0.

ˆ
eiz

z
dz =

ˆ 0

π

eϵeiθ

ϵeiθ

Ä
iϵeiθ
ä
dθ
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= −iπ

Now let us put it all together. We know by the Residue theorem that
˛

C

eiz

z
dz = 0

And we know that the outer semicircle has no contribution. We know that the inner semicircle
contribution exactly opposite to the real line contribution, and we computed it to be −iπ, thus:

ˆ −ϵ

−R

eiz

z
dz +

ˆ R

ϵ

eiz

z
dz = − (−iπ)

= iπ

Where we take the limits ϵ → 0 and R → ∞.

Now recall that to obtain the original integral, we care about the imaginary component of this, and
thus we have that ˆ ∞

−∞

sin x
x

dx = π

Is there a way of setting this problem up by closing the contour in the lower half plane? This can
be done by choosing e−iz instead of eiz.

1.7 Principal Value of an Integral
Consider the scenario in which the path of integration actually passes through a singularity in the
integrand. In this case, strictly speaking, the integral does not exist. To give it meaning, one must
choose a path that circumvents the singularity. How this path is chosen depends on the physics of
the problem. The value of the integral then depends on the choice of path.

Consider an integral with a simple pole on the real axis:ˆ ∞

−∞

f (x)
x− x0

dx

with x0 on the real axis, and f (x) analytic at x = x0.

One possible deformation of the path is the upper semicircle of radius ϵ, denoted C>. We can then
split the integral into 3 integrals, one before the semicircle, the semicircle, and the real axis after the
semicircle. We denote the principal value of the integral to be the contribution from the segments
that are not the semicircle, we throw away the contribution due to the semicircle:

ˆ ∞

−∞

f (x)
x− x0

dx := lim
ϵ→0

ïˆ x0−ϵ

−∞

f (x)
x− x0

+
ˆ ∞

x0+ϵ

f (x)
x− x0

dx

ò
The semicircle integral can be evaluated in the limit ϵ → 0:

lim
ϵ→0

ˆ
r>

f (z)
z − x0

dz = −iπf (x0)

Note that if we chose the semicircle that goes below the real axis, we have the same integral, but
with a different sign. We see that the value of the integral depends on the path, which must be
chosen on physical considerations.
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1.8 Mapping
A continuous real function y = f (x) of a real variable x can be exhibited by plotting a curve in the
xy plane. This is called a graph.

In the case of a complex function:

w = f (z) = u (x, y) + v (x, y)

The situation is more complicated because both w and z are represent geometrically by points
in the complex plane. This suggests the use of two separate complex plane for the two variables.
There is a complex plane for x and y, denoted the z plane, and there is a complex plane for the
corresponding point w = f (z), denoted the w plane. Complex functions map points on the z plane
to points on the w plane. The point w = f (z0) corresponding to the point z0 is called the image
of z0 under the transformation f (z). The correspondence between a point in the z plane and its
image is called a mapping.

Let us consider some simple mappings. Consider the translation:

f (z) = z + z0

In terms of x and y:

x → x+ x0

y → y + y0

Every point in the z plane is shifted by some constant amount.

Consider a rotation:

f (z) = zz0

Where |z0| = 1. This corresponds to rotation by an angle ϕ = arg (z0). In polar form:

f
Ä
reiθ
ä

= reiθ+ϕ

Now consider the case where z0 ∈ R, and z0 > 0. In this case, this transformation is a rescaling.

For general z0, we have a combination of a rotation and a rescaling.

Now consider the mapping w = f (z) = z2. Writing this out in polar form:

z = reiθ → w = Reiϕ

We find that R = r2, and ϕ = 2θ.

Taking 0 ≤ θ < 2π, we see that the upper half of the z plane maps onto the entire w plane. The
lower half of the z plane also maps onto the entire w plane. The points reiθ and reiθ+π map to the
same point on the w plane. We denote this by saying that the w plane is covered twice by the image
of the z plane.

We can imagine this as two copies of the w plane placed on top of each other, so that the upper
sheet is the image of the upper half z plane, and the lower sheet is the image of the lower half of
the z plane. As we pass from the upper half of the z plane to the lower half, the image point pass
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from the upper sheet to the lower sheet. This configuration is called a Riemann surface. Mapping
on to this Riemann surface is one-to-one.

Consider the mapping of inversion:

w = f (z) = 1
z

Writing z = reiθ and w = Reiϕ, we find that R = 1
r and ϕ = −θ.

This mapping w = 1
z maps every circle or straight line onto a circle or straight line. To see this,

note that every circle or straight line in the z plane can be written as

A
(
x2 + y2) +Bx+ Cy +D = 0

where all coefficients are real. Written in terms of z and z:

A (zz) + B

2 (z + z) + C

2i (z − z) +D = 0

Now we apply the mapping, w = 1
z , w = 1

z :

A+ B

2 (w + w) + −C

2i (w − w) +Dww = 0

Now let w = u+ iv, and w = u− iv. We can rewrite what we have as

A+Bu− Cv +D
(
u2 + v2) = 0

Which is of the same form as what we started with, and thus we have either a circle or straight line.
What is the condition for us to map to a straight line? If D = 0 and A = 0, then we have a straight
line, so a straight line passing through the origin maps through a straight line through the origin.

Also note that a circle that passes through the origin in the z plane will be mapped to a straight
line passing through the origin.

1.9 Method of Steepest Descent
This is a method of approximating complex line integrals1. We first illustrate the central idea by
considering the integral of a real function. We want to look for an approximation to the gamma
function Γ (x+ 1) when x is large, positive, and real. We begin from the definition:

Γ (x+ 1) =
ˆ ∞

0
txe−t dt

If we plot the integrand as a function of t, we see that we have a peak around t = x, and the peak
gets sharper as x increases. We approximate that the bulk of the contribution to the integral is
given by the value at the peak.

1This is covered in Mathews and Walker, as well as Arfken
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We can first show that it indeed has a peak at t = x. Let us denote the integrand g (t). We can find
the maximum of g (t):

d

dt

(
txe−t

)
= 0

We can solve this, and we find that the peak t0 is found at x. We approximate the integrand as:

g (t) = ef(t)

Where f (t) = x log t− t. We can now compute derivatives of f (t):

d

dt
f (t) = x

t
− 1

d2

dt2
f (t) = − x

t2

Now Taylor expanding f (t) about t = x:

f (t) = (x log x− x) − 1
2

1
x

(t− x)2 + . . .

We can thus approximate the integral as

Γ (x+ 1) ≈
ˆ ∞

0
exp
ï
x log x− x− 1

2x (t− x)2
ò
dt

≈ ex log x−x

ˆ ∞

0
e− 1

2x
(t−x)2

dt

≈ ex log x−x

ˆ ∞

−∞
e− 1

2x
(t−x)2

dt

Where we have increased the bounds to the real numbers by noting that the contribution from
−∞ → 0 produces negligible effects on the integral. The remaining integral is a standard Gaussian
integral:

Γ (x+ 1) ≈ ex log x−x
√

2πx
=

√
2πxxxe−x

This is the first term in Stirling’s formula:

n! ≈
√

2πn
(n
e

)n

Which is valid for large n.

Let us now consider the complex case, which is significantly more complicated. Usually, when we
apply the method of steepest descent, we are integrating a function of the form

I (s) =
ˆ

C
g (z) esf(z) dz

Where s is large and positive, and g and f are analytic functions. In the case where f (z) = u+iv, we
would expect most of the contribution to the integral to come from the region where u is maximized,
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because we have esu. However, the phase eiv could have either sign. We have to choose the contour
such that u is very large, but the phase picked up by v does not go negative.

Since f (z) is an analytic function, neither u nor v can have an extremum other than at a singularity:

f (z) = u+ iv

If f (z) is analytic, ∇2u = ∇2v = 0, the two functions satisfy Laplace’s equation. Recall that
Laplace’s equation has no maxima or minima in a bounded region. Thus u and v have no maxima
in regions in which they are analytic. If there is a point where their derivatives are zero, the point
must be a saddle point. At the saddle point, we can approximate f (z) as:

f (z) = f (z0) + 1
2f

′′ (z0) (z − z0)2

Where z = z0 is the location of the saddle point. We can write then write things as an absolute
value times a phase:

f ′′ (z0) =
∣∣f ′′ (z0)

∣∣ eiθ

z − z0 = |z − z0| eiα

Where α controls the direction of z from z0. We can now break f (z) into the real and imaginary
parts:

u (x, y) ≈ u (x0, y0) + 1
2
∣∣f ′′ (z0)

∣∣ |z − z0|2 cos (θ + 2α)

v (x, y) ≈ v (x0, y0) + 1
2
∣∣f ′′ (z0)

∣∣ |z − z0|2 sin (θ + 2α)

We see that looking at u, the path of steepest descent is when cos (θ + 2α) = −1, which corresponds
to α = − θ

2 ± π
2 . Along these directions, sin (θ + 2α) is a constant, so the oscillatory factor in the

integral will not cause any problems.

We choose the contour between two points A and B such that the contour passes over the saddle
point, along the path of steepest descent. this will give us a maximum of v (x, y), and minimal
cancellations from v (x, y).

We write z = z0 + leiα, where l is real and positive. The integral can be written as

I (s) =
ˆ

C′
g
(
z0 + leiα

)
exp

[
sf

(
z0 + leiα

)]
eiα dl

Now Taylor expanding:

f
(
z0 + leiα

)
= f (z0) + 1

2 f ′′(z0)︸ ︷︷ ︸
|f ′′(z0)|eiθ

l2e2iα + . . .

g
(
z0 + leiα

)
= g (z0) + . . .

Assuming that g (z) is slowly varying around z0, we can approximate the integral as

I (s) ≈ g (z0) esf(z0)
ˆ

C′
e− 1

2 |f ′′(z0)|l2seiα dl
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Since the integrand falls away very quickly away from z0, we can replace the limits on l with −∞ to
∞. This produces a standard Gaussian integral:

I (s) ≈
√

2πg (z0) esf(z0)eiα√
s |f ′′(z0)|

Note that we have a dependence on α, which is equal to

α = −θ

2 ± π

2

where the sign is determined by the direction in which we traverse the saddle point, and θ is the
phase of the second derivative f ′′ (z0).

Let us consider some examples.

The gamma function can be analytically continued for complex values:

Γ (z + 1) =
ˆ α

0
e−ttz dt Re (z) > −1

where the integral is along the real line. If we write z = seiβ, we want an approximation for Γ (z)
when s ≫ 1.

Let us look at the general form that we have derived an approximation for:

I (s) =
ˆ
g (z) esf(z) dz

Naively, we can make the mapping g (z) = e−z, and f (z) = eiβ ln z. However, we want a place
where f ′ (z) = 0, and our choice of f (z) has no saddle point. Thus we have to make a different
choice.

To do so, we rewrite the integral:

Γ (z + 1) =
ˆ ∞

0
ez ln t−t dt

=
ˆ ∞

0
es[eiβ ln t− t

s ] dt

This is of the form
´∞

0 esf(t) dt, with f (t) = e−β ln t− t
s . We see that with this choice, g (z) = 1.

We can compute the derivatives of f (t):

f ′ (t) = eiβ

t
− 1
s

f ′′ (t) = −eiβ

t2

Setting f ′ (t) = 0, we find that t0 = seiβ = z, and thus at t = t0:

f (t0) = eiβ [ln z − 1]
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And we can compute the second derivative:

f ′′ (t0) = −e−iβ

s2

= 1
s2 e

i(π−β)

Thus we see that |f ′′ (t0)| = 1
s2 , and θ = π − β. We can then compute α:

α = −
Å
π − β

2

ã
± π

2

Which gives us α = β
2 or α = β

2 − π. Now applying the general formula:

I (s) =
√

2πg (t0) esf(t0)eiα√
s |f ′′ (t0)|

From this, we have that

Γ (z + 1) ≈
√

2πses[eiβ(ln z−1)]eiα

≈
√

2πse[z ln z−z]eiα

Now we have to choose which α to use, which determines the sign. Consider the case where β = 0.
We expect to get a positive approximation for Γ (z + 1), and thus we must pick the α that produces
a positive result. We see that ei0 = +1, while e−iπ = −1. Thus we must choose α = β

2 :

Γ (z + 1) ≈
√

2πse[z ln z−z]e
iβ
2

=
√

2πz(z+ 1
2 )e−z

Let us do an example. Consider the Hankel function of the first kind, which can be represented by
the contour integral:

H(1)
ν (s) = 1

π

ˆ ∞eiπ

ϵ
e

s
2 (z− 1

z ) 1
zν+1 dz

where ϵ → 0. Since this function has a branch cut on the entire negative real line, the integral
bounds represent a line that is just above 0, and going all the way to negative infinity.

This integral is in the standard form for our steepest descent approximation:

g (z) = 1
zν+1

f (z) = 1
2

Å
z − 1

z

ã
Taking derivatives:

f ′ (z) = 1
2 − 1

2z2

f ′′ (z) = − 1
z3
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We see that z0 is i or −i. We use the contour that passes through the upper point, +i, and then
goes to −∞ from above the real axis.

At z = +i, f (z0) = i = ei π
2 , and f ′′ (z) = −i = e−i π

2 . Note that the argument of z must be between
−π and π in order to avoid the branch cut. We see that θ = −π

2 , and thus

α = −π

2 ± π

2

And so α = 3π
4 or −π

4 . By inspecting the contour, we see that α = 3π
4 must be the correct choice.

We can then write out the result of the approximation:

H(1)
ν (s) ≈

…
2
πs
ei(s−ν π

2 + π
4 )

1.10 Analytic Continuation
Earlier, we discussed Cauchy’s Integral Formula (1.5), which told us that knowing the value of the
function on every point of a closed contour can give us the value inside the region. Is there a more
powerful statement? Suppose we have a large region, on which f (z) is analytic. If we know the
value of f (z) for some subcontour of this region, then we can actually determine f (z) everywhere
in the large region. In fact, it does not need to be a closed contour, if we know the value on a line
in the region, we can obtain the value of f (z) for the rest of the region.

We begin with the identity theorem, which claims that if two analytic functions are equal in a
subregion of a region, then they are equal across the entire region.

Theorem 1.9. Identity Theorem. Let f1 (z) and f2 (z) be two functions of z that are analytic in
a region D. If the two functions coincide in the neighborhood of a point z0 in D or on the segment
of a curve lying in D, then they coincide throughout D.

Proof. The proof of the identity theorem is in two steps. First, we show that if a function f (z) is
analytic, the points where f (z) = 0 are isolated unless f (z) = 0 in the entire region.

From this, we consider the function f (z) = f1 (z) − f2 (z). Since the two functions are analytic,
then f (z) is analytic. Then we note that the zeros of this function (where f1 (z) = f2 (z)) are not
isolated, and thus by the previous statement, f (z) = 0, and thus f1 (z) = f2 (z) on the region.

Let us now prove our first statement. If a function f (z) = 0 at a point z = z0, this point is called a
zero of f (z). A function is said to have a zero of order n at z = z0 if

f (z0) = 0, df

dz

∣∣
z=z0

= 0, . . . , d
n−1

dzn−1 f (z)
∣∣
z=z0

= 0

but dn

dzn f (z)
∣∣
z=z0

̸= 0. That is, the nth derivative is nonzero, and all lower order derivatives are
zero.

If f (z) has an nth order zero, the Taylor expansion of f (z) around z0 is given by

f (z) = an (z − z0)n + an+1 (z − z0)n+1 . . .

= (z − z0)n
∞∑

k=0
an+k (z − z0)k
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= (z − z0)n h (z)

Where h (z) =
∑∞

k=0 an+k (z − z0)k. Since h (z) is analytic and nonvanishing at z = z0, and since
h (z) is continuous, it is nonvanishing in some neighborhood of z0. Then f (z) is nonvanishing in
the neighborhood of z0. This implies that the zeros of f (z) are isolated. The only case where this
is not true is when all the derivatives of f (z) are zero, in which case the function is 0 everywhere.
Thus we have proven the first statement, and the second statement follows.

Consider a function that is analytic everywhere except for a branch cut. Suppose we only know
the value of the function in the neighborhood of a point z0. The claim is that, from the value of
f (z) in the region around z0, we have enough information to determine f (z) everywhere where the
function is analytic.

Suppose we want to find the value of f (z) at z = z′
0. To do this, we draw a smooth line connecting

z0 to z′
0, making sure to never cross into a region in which f (z) is not analytic. We know the Taylor

expansion of f (z) around z = z0:

f (z) =
∞∑

n=0
a(0)

n (z − z0)n

By Laurent’s theorem (1.6), this series is valid in the largest circle that can be drawn that does not
pass a singular point. However, if this largest possible circle does not contain z′

0, we must continue.
We pick another point z1on the curve we drew, and then do a Taylor series around that point, since
we now know the Taylor series around z1. We can then draw the largest circle for which this Taylor
series is valid, and then we can repeat this process of picking new points and finding circles for
which the Taylor expansions are valid, until we draw a circle that contains z′

0.

Let our largest circle be known as γ0, we choose a point z1 inside γ0, and since f (z) is known inside
γ0, we can determine the coefficients of the Taylor expansion of f (z) around z = z1, by computing
all of the derivatives:

f (z) =
∞∑

n=0
a(1)

n (z − z1)n

This Taylor expansion is valid in the largest possible circle around z1 that does not hit a singular
point, which we denote γ1. We have now found the value of f (z) at some point that is in γ1 but
not in γ0. We then choose z2 in γ1 but not in γ0, and repeat the process of computing the Taylor
expansion and drawing the largest circle. We will eventually find a circle that contains z′

0, providing
the value of f (z) at z = z′

0.

The process of determining the behaviour of an analytic function outside the region where it was
originally defined is called analytic continuation.

Consider the following situation. We have a region D1, and a partially overlapping region D2. If
f1 (z) is analytic in D1, f2 (z) is analytic in D2, and f1 (z) = f2 (z) in the region where D1 and D2
overlap, the analytic continuation of f1 into D2 must be equal to D2.

For example, consider the function f1 (z) = 1 + z + z2 + . . . for |z| < 1, and the function f2 (z) =
2
3 +

(2
3
)2 (

z + 1
2
)

+
(2

3
)3 (

z + 1
2
)2 + . . . , valid for

∣∣z + 1
2
∣∣ < 1 z.
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These are geometric series, so they can be summed:

f1 (z) = 1
1 − z

for |z| < 1

f2 (z) =
2
3

1 − 2
3
(
z + 1

2
)

= 1
1 − z

for
∣∣∣∣z + 1

2

∣∣∣∣ < 3
2

The circle |z| < 1 is surrounded by the circle given by
∣∣z + 1

2
∣∣ < 3

2 .

We see that if we analytically continue f1 (z) into the region for which f2 (z) is defined, we get the
same result as if we used f2 (z).

Consider the function g (x) = sin x, for −π < x < π. There is a unique analytical continuation of
this function into the complex plane. The continuation is just sin z. This is equal to sin x on the
real line, and it is analytic on the real line, and therefore is the unique analytic continuation.

Now consider

f (x) = 1 + x+ x2 + . . . 0 << 1
2

The analytic continuation of this is obtained by once again replacing x with z:

f (z) = 1 + z + z2 + . . . 0 < |z| < 1

= 1
1 − z

However, when we sum this geometric series, we see that we only have a singularity at z = 1. Other
than z = 1, the function is analytic everywhere. Thus, we can analytically continue the function to
a larger region than just the circle with radius 1.

Let us do an example. Consider the integral:

I
(
a2) =

ˆ ∞

−∞

dx

x2 − a2 + iϵ
ϵ → 0+

Suppose we first want to evaluate this integral for a2 ∈ R+, and then for a2 ∈ R−. By promoting a2

to a complex variable, and analytically continuing I
(
a2) appropriately, we can show that results for

both cases are consistent.

We can first compute the real and positive case. The integrand is singular at z = −a + iε̂ and
z = a − iε̂, where ε̂ = ε

2a . If we examine the pole structure, we have a pole slightly above the
negative real axis, and a pole slightly below the positive real axis, corresponding to −a+ iε̂ and
z = a− iε̂, respectively. We close the contour in the upper half plane, so only the pole at z = −a+ iε̂
will contribute. From this contour, we will find that

I
(
a2) = − iπ

a

For the case where a2 is negative and real, we have a standard integral when ϵ → 0+:

I =
ˆ ∞

−∞

dz

z2 + |a2| + iε
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= 1
|a|

arctan
Å
z

|a|

ã∣∣∣∣∞
−∞

= π

|a|

Now we want to see how these two are consistent with each other. If a2 is treated as a complex
variable, we want to examine the singularity structure of I

(
a2). We note that if Im

(
a2) ≤ 0, then

I
(
a2) is analytic. We can then write a2 as:

a2 = |a|2eiθ − π < θ < 0

From the first case, we found that I
(
a2) = −πi

a for θ = 0. We can then analytically continue this
into the region for −θ between 0 and −π:

I
(
a2) = −πi

a

= − πi

|a|eiθ/2

Setting θ = −π, which corresponds to a2 = −|a|2, we find that

I
(
a2) = − πi

|a|eiθ/2

= π

|a|

Which agrees with what we computed manually.
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2 Classical Mechanics
2.1 Calculus of Variations

Calculus of variations is the calculation of extrema of quantities which can be expressed as an
integral.

For example, given two points on a plane, what is the shortest distance between them? Obviously,
the answer is a line connecting the two points, but how do we go about proving this?

First, let us consider the segment length of the path y (x) joining (x1, y1) to (x2, y2). The segment
length is given by

ds =
√
dx2 + dy2

= dx

 
1 +
Å
dy

dx

ã2

We can define the length of the path as the integral over all path segments:

L =
ˆ 2

1
ds

=
ˆ x2

x1

√
1 + y′2 dx

We now want to minimize L with respect to y (x). Note that L is a functional, a function of a
function, L [y (x)].

Let us define y0 (x) as the function that minimizes L. Now consider some more general y (x), which
is a small perturbation from y0 (x) :

y = y0 (x) + εη (x)

Where ε ≪ 1, and η (x) is some general function. Since y0 (x) is the minimal path, then L[y0 (x)] <
L (y (x)), for any value of η and ε. Let us consider the length for the new function:

L [y0 (x) + εη (x)] =
ˆ »

1 + (y′
0 + εη′)2 dx

=
ˆ
dx
»

1 + y′2
0 + 2εη′y′

0 + O(ε2)

=
ˆ
dx
»

1 + y′2
0 +
ˆ
dx

εy′
0η

′√
1 + y′2

0
+ O

(
ε2)

Where we have expanded for small ε and then used a binomial expansion. Rewriting the second
term as a total derivative:

L[y0 + εη] =
ˆ
dx
»

1 + y′2
0 +
ˆ
dx

εy′
0η

′√
1 + y′2

0
+ O

(
ε2)

= L[y0 (x)] −
ˆ x2

x1

dx ε
d

dx

ñ
y′

0√
1 + y′2

0

ô
η
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Now we note that in order for the relationship between the length of y and y0 to be maintained, we
need the second term to go to zero, since ε can take any sign, and therefore this term could push
the path length below the minimum path length of y0. Thus we have that

ˆ x2

x1

d

dx

ñ
εy′

0√
1 + y′2

0

ô
η dx = 0

For all η (x). We can see that for this to be true for all η, we need the derivative term to be 0:

d

dx

ñ
εy′

0√
1 + y′2

0

ô
= 0

This implies that

y′
0√

1 + y′2
0

= const.

Which then tells us that y′
0 must be a constant, and thus y0 (x) is a line.

Let us do a similar process to derive the Euler-Lagrange equation.

2.2 Euler-Lagrange Equation
Consider some function S, which is dependent on some functional f :

S =
ˆ x2

x1

f
[
y (x) , y′ (x) , x

]
dx

Where y (x1) = y1, and y (x2) = y2. Essentially, we are connecting two points in the plane. We
want to find the function f that extremizes S.

Once again, let y = y0 (x) extremize S. Now consider y = y0 (x) + εη (x). We have the constraint
that

dS

dε

∣∣∣∣
ε=0

= 0

in order to maintain the fact that y0 extremizes S. Let us now write S as a function of ε:

S (ε) =
ˆ
dx f

(
y0 + εη, y′

0 + εη′, x
)

Expanding for small ε:

f
(
y0 + εη, y′

0 + εη′, x
)

= f
(
y0, y

′
0, x

)
+ εη

Å
df

dy

ã
y′

0,x

+ εη′
Å
df

dy′

ã
y0,x

Now writing out the derivative dS
dε :

dS

dε
=
ˆ
dx

ï
η

Å
df

dy

ã
+ η′
Å
df

dy′

ãò
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Now integrating the second term by parts (and noting that the extra term goes to zero because η
has to be zero at the boundary):

dS

dε
=
ˆ
dx

ï
η

Å
df

dy

ã
− η

d

dx

Å
df

dy

ãò
=
ˆ
dx η

ï
df

dy
− d

dx

df

dy

ò
Now noting that this must, by the constraints, be zero:

ˆ
dx η

ï
df

dy
− d

dx

df

dy

ò
= 0

And once again, for this to be true for general η, we need the other part to be zero:

df

dy
− d

dx

df

dy
= 0 (4)

Which is the Euler-Lagrange equation.

Let us do an example, returning to our question about the shortest path between two points. In
this case, we had a length function:

L =
ˆ x2

x1

√
1 + y′2 dx

We see that L = f (y, y′, x) =
√

1 + y′2, which we can insert into the Euler-Lagrange equation:

0 − d

dx

Ç
y′√

1 + y′2

å
= 0

From which we can once again conclude that y′ is a constant, and therefore y must be a line.

2.3 The Brachistochrone
Given two points 1 and 2, in what shape should a track be built so that a particle released from
point 1 will reach point 2 in the smallest amount of time? This is the Brachistochrone (equal time)
problem, and is a classic example of the application of the Euler-Lagrange equation. We want to
minimize the time:

T =
ˆ 2

1

ds

v

=
ˆ 2

1
dx

√
1 + y′2
√

2gy

Where we have derived the velocity from energy conservation:

1
2mv

2 = mgy

v =
√

2gy
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Thus we have that our f that we will insert into Euler-Lagrange:

f =
√

1 + y′2
√

2gy

Computing the derivatives:

df

dy′ = y′√
2gy (1 + y′2)

df

dy
= 1

2

√
1 + y′2√
2gy3

Plugging this into the Euler-Lagrange equation:

−1
2

√
1 + y′2√
2gy′3

− d

dx

ñ
y′√

2gy (1 + y′2)

ô
= 0

d

dx

ñ
y′√

y (1 + y′2)

ô
+

√
1 + y′2

2
√
y3

= 0

Multiplying by y′/
√
y (1 + y′2) :

y′√
1 + y′2

d

dx

ñ
y′√

1 + y′2

ô
+ y′

2y2 = 0

d

dx

ï1
2

y′2

1 + y′2 − 1
2y

ò
= 0

y′2

1 + y′2 − 1 = const · y

Since we are considering y as a height, let us define y to be positive, and we then note that the left
side of the expression is negative. Thus, the constant on the right side must be negative, and by
dimensional analysis, it have units of one over length. For this reason, we denote the constant to be
− 1

2a , where a is a positive length constant:

y′2

1 + y′2 − 1 = − 1
2ay

Solving this equation for y′:

y′ =
√

2a− y

y

Now trying to solve for y (x):
ˆ
dx =

ˆ
dy

…
y

2a− y

We now apply the ansatz y = a (1 − cos θ) :
ˆ
dx =

ˆ
dθ (a sin θ)

 
1 − cos θ
1 + cos θ
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Now we write the sin θ in terms of the half angle formula, and write the square root as a tangent
half angle formula:

ˆ
dx =

ˆ
dθ 2 sin

Å
θ

2

ã
cos
Å
θ

2

ã
tan θ2ˆ

dx = 2a
ˆ
dθ sin2 θ

2ˆ
dx = a

ˆ
dθ (1 − cos θ)

From this, we find that x = a (θ − sin θ).

Thus, we have that x = a (θ − sin θ), and y = a (1 − cos θ).

If we consider this parametric function close to point 1, where x ≪ a and y ≪ a, we can expand:

x = aθ3

6 y = aθ2

2

θ =
Å6x
a

ã1/3

From this, we find that close to point 1:

y =
Å9ax2

2

ã1/3

We see that close to the first point, we have a very steep descent.

Consider a functional I (q1, q2, . . . , q̇1, q̇2, . . . , t). From this, we can use a similar process as the
single-variable case, we can derive a set of Euler-Lagrange equations:

∂I

∂qi
− d

dt

Å
∂I

∂q̇i

ã
= 0

2.4 Lagrangian Mechanics
The Lagrangian formulation of mechanics is an alternative to the Newtonian mechanics, and provides
two advantages. The first is that it works equally well in all coordinate systems. The second is that
it handles constrained systems easily, and unless desired, we can bypass the computation of the
forces of constraint.

Let us begin with unconstrained motion. Consider a single particle in 3 dimensions, moving
unconstrained under the action of a force F = −∇U . The kinetic energy is given by T = 1

2mẋ2 =
1
2m

(
ẋ2 + ẏ2 + ż2). By definition, the Lagrangian is given by the difference between the kinetic and

potential energy:

L = T − U

Computing the derivative with respect to a coordinate and its time derivative:Å
∂L
∂x

ã
ẋ

= −∂U

∂x
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= FxÅ
∂L
∂ẋ

ã
x

= mẋ

= px

From Newton’s second law, d
dtpx = Fx, and thus we have that

d

dt

Å
∂L
∂ẋ

ã
x

= ∂L
∂x ẋ

Writing the same equation for any coordinate:

− d

dt

Å
∂L
∂ẋi

ã
+ ∂L
∂xi

= 0

Now, we make a crucial observation, this has the form of the Euler-Lagrange equation (4), obtained
by extremizing S =

´ t2
t1

L dt.

The action S will be stationary along the physical path between the endpoints (t1, x1, y1, z1) and
(t2, x2, y2, z2). This is known as Hamilton’s Principle.

One advantage of the Lagrangian formalism is that it works for generalized coordinates, not just
Cartesian. If we switch from (x, y, z) ot some generalized (q1, q2, q3), as long as there is a one to one
mapping between the two coordinate systems, we can work in that coordinate system. This means
that we can choose the coordinate system that best suits the problem, rather than just working in
Cartesian.

We can write our Lagrangian as a function of our generalized coordinates:

L (x, y, z, ẋ, ẏ, ż) → L (qi, q̇i)

The action integral can then be written as

S =
ˆ t2

t1

L (qi, q̇i) dt

Consider two points in the Cartesian plane, (t1, x1, y1, z1) and (t2, x2, y2, z2), and some path con-
necting the two of the points. At every point along the trajectory, the value of L is fixed. If we
switch coordinate systems, the value of the Lagrangian is invariant, since we define the Lagrangian
to be the same regardless of coordinate system. Thus, the value of the action for a given path must
be the same in either coordinate system, since we are integrating over the Lagrangian, which is
coordinate invariant. Thus the path that extremizes S will be the same across both coordinate
systems. For this reason, we can apply the Euler-Lagrange equations for generalized coordinates:

− d

dt

Å
∂L
∂q̇i

ã
+ ∂L
∂qi

= 0

We denote ∂L
∂qi

as the ith component of the generalized force, and denote ∂L
∂q̇i

as the ith component
of the generalized momentum. From this, we see that the Euler-Lagrange equation states that the
rate of change of generalized momentum is equal to the generalized force.
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Let us do an example. Consider a single particle in polar coordinates. This has kinetic energy given
by

T = 1
2mv

2

= 1
2m

(
ṙ2 + r2ϕ̇2)

Which can be derived by noting that r = rêr, and the velocity is given by

v = dr

dt

= ṙêr + r
dêr

dt

This derivative term is nonzero. If we change r, the direction of êr does not change, so êr must only
depend on ϕ. Thus, we can write the time derivative of the direction as:

dêr

dt
= dêr

dϕ

dϕ

dt

Now we note that dêr
dϕ = êϕ, and thus we have that

v = ṙêr + rϕ̇êϕ

Squaring this:

v2 = ṙ2 + r2ϕ̇2

We can now write out the Lagrangian:

L = T − U

= 1
2m

(
ṙ2 + r2ϕ̇2) − U (r, ϕ)

We have two Euler-Lagrange equations:

d

dt

Å
∂L
∂ṙ

ã
= ∂L
∂r

d

dt
(mṙ) = mrϕ̇2 − ∂U

∂r

mr̈ −mrϕ̇2 = −∂U

∂r

r̈ is the radial acceleration, and rϕ̇2 is the centripetal acceleration. Together, the two of them
balance the radial force, −∂U

∂r .

Looking at the second Euler-Lagrange equation:

d

dt

Å
∂L
∂ϕ̇

ã
= ∂L
∂ϕ

d

dt

(
mr2ϕ̇

)
= −∂U

∂ϕ
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We see that mr2ϕ̇ is the angular momentum:

L = r × p

= r ×mv

= m
(
r ×

[
ṙêr + rϕ̇êϕ

])
= mr2ϕ̇êz

If the left side is the rate of change in the angular momentum, then the right side must be the
torque, which we can verify:

F = −∇U

= −∂U

∂r
êr − 1

r

∂U

∂ϕ
êϕ

The torque is defined as:

τ = r × F

= rêr ×
Å

−∂U

∂r
êr − 1

r

∂U

∂ϕ
êϕ

ã
= −∂U

∂ϕ
êz

Note that in this case, the generalized momentum was the angular momentum, and the generalized
force was the torque, which are both dimensionally different from the usual dimensions of momentum
and force.

2.4.1 Constrained Systems

Now let consider constrained systems.

Consider a simple pendulum. In this system, x and y are not independent, the length of the string
dictates that

√
x2 + y2 = l. The system has only 1 degree of freedom, rather than 2. The most

convenient parameterization of this system to us the angle from the vertical, θ. If we know θ, we
can find x and y. A tremendous advantage of the Lagrangian formalism is that the Euler-Lagrange
equations apply directly, we do not need to factor in the constraints. We will show this to be true
later, but for now, let us assume it to be true.

We can write the kinetic energy:

T = 1
2mv

2

= 1
2m

(
ẋ2 + ẏ2)

= 1
2ml

2θ̇2

The pendulum is under the influence of gravity:

U = mgl (1 − cos θ)
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Where we have set the potential in the fully vertical position to be our zero point. We can now
write out the Lagrangian:

L = T − U

= 1
2ml

2θ̇2 −mgl (1 − cos θ)

Now writing out the Euler-Lagrange equation for θ:
d

dt

Å
∂L
∂θ̇

ã
= ∂L
∂θ

d

dt

(
ml2θ̇

)
= mgl sin θ

θ̈ = −g

l
sin θ

Which is the equation of motion for a simple pendulum, and a small angle approximation recovers
simple harmonic motion.

Let us now discuss generalized coordinates for a constrained system. We say that the parameters
q1, q2, . . . , qn are generalized coordinates for a system of N particles, α = 1, 2, . . . N , with positions
rα, if each position rα can be represented as a function of q1, . . . , qn, and vice versa, we can represent
each qi as some function of r1, r2, . . . , rN . The number of generalized coordinates n is the smallest
number that allows the system to be parameterized this way. For an unconstrained system of
particles in 3 dimensions, n = 3N . If the number of generalized coordinates is less than this, then
the system is constrained.

For example, consider a double pendulum, which has 4 coordinates, x1, y1, x2, y2. However, we can
condense this down to two coordinates, θ1 and θ2, which uniquely determine x1, x2, y1, y2.

If we have a system that is time dependent, such as a pendulum hung inside a moving box, then we
can still represent the system using the generalized coordinate θ, but there will be some dependence
on t. If a system can be represented using generalized coordinates with no dependence on t, then
the coordinates are natural coordinates.

The number of degrees of freedom is the number of ways the system can move from any given
initial configuration. In most simple examples, this is the same as the number of generalized
coordinates needed to describe the system. These systems are called holonomic. For an example
of a nonholonomic system, consider a plane, on which there is a groove, with a coin in the groove.
The coin can only forwards or backwards, giving us 1 degree of freedom. We have a generalized
coordinate, the angle relative to a chosen point on the rim of the coin, and the point contacting the
ground. However, consider a ball on a plane. This has two degrees of freedom, but if we want to pick
a reference point, we actually see that we need 3 generalized coordinates to specify a configuration
(Euler angles?).

Let us now discuss Lagrange’s equations for constrained systems. To keep things simple, let us
consider a single particle constrained to move on a two dimensional surface. We have two generalized
coordinates q1 and q2, which fully describe the system. Let us assume that there are two kinds of
forces acting on the system. The first are the forces of constraint, which keep the particle on the
surface, and therefore do no work, and the second are all other forces, such as gravity, which can do
work. We denote the non constraint forces by F , and the constraint forces by Fconstr.:

Ftotal = F + Fconstr.
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We assume that the non-constraint forces are the gradient of some potential:

F = −∇U (r, t)

We write the Lagrangian of the system disregarding the constraints:

L = T − U

And we will show that this will be the correct prescription for dealing with constrained systems.

Consider two points, r1 and r2, through which the particle passes at times t1 and t2 respectively.
Suppose the particle follows path r (t), and we have a infinitely close “wrong” path, R (t):

R (t) = r (t) + ε (t)

Where ε (t) is zero at the endpoints, and is infinitesimal for all t.

We assume that both paths are constrained to the surface, and since they are infinitesimally close,
the vector that joins them, ε (t), must also lie on the surface. This is trivially true for a plane, and
due to the infinitesimal nature of the paths, this is true for all locally planar surfaces.

Now let us consider the action integral:

S =
ˆ t2

t1

L dt

We can compute the difference between the Lagrangians for the true path and the wrong path:

∆L = mṙ · ε̇ − ε · ∇U + O
(
ε2)

Working through this, we are left with

S = −
ˆ
dt ε · [mr̈ + ∇U ]︸ ︷︷ ︸

Fconstr.

Note that the quantity in the brackets is the constraint force. Since ε was previously shown to lie
on the surface, and the constraint forces are perpendicular to the surface, this dot product must
always be zero. The action, which we defined using only non-constraint forces, is stationary at the
true path with respect to all other paths on the surface. Thus we have proved Hamilton’s principle
for paths consistent with the constraints. Although we showed this for a single particle, this holds
for constrained systems with a general number of degrees of freedom and generalized coordinates.

This allows us to blindly apply the Euler-Lagrange equations to the generalized coordinates of the
system, disregarding any constrained forces.

2.4.2 Examples

Let us do a simple example of Lagrangian mechanics. Consider Atwood’s machine, two masses
connected by a string pulled over a pulley. We define the distance from the center of the pulley to
m1 to be x, and the distance from the center of the pulley to m2 to be y. The total length of the
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string is then given by l = x+ y + πR, where the radius of the pulley is R. The kinetic energy is
given by

T = 1
2m1ẋ

2 + 1
2m2ẏ

2

= 1
2m1ẋ

2 + 1
2m2 (−ẋ)2

= 1
2 (m1 +m2) ẋ2

Computing the potential energy:

U = −m1gx−m2gy

= −m1gx+m2gx+ const.

Writing out the Lagrangian:

L = T − U

= 1
2 (m1 +m2) ẋ2 + (m1 −m2) gx

Now writing out the Euler-Lagrange equations:

d

dt

Å
∂L

∂ẋ

ã
− ∂L

∂x
= 0

(m1 +m2) ẍ− (m1 −m2) g = 0

Which provides the standard result for the acceleration:

ẍ = m1 −m2
m1 +m2

g

Now let us consider a block sliding down a wedge, where the wedge can also slide on the ground.
The inclination of the wedge is given by angle α.

In this case, we define two coordinates, q1 is the distance from the top of the wedge to the mass
sliding down the wedge (measured parallel to the slope of the wedge), and q2 is the distance from
the starting point to the edge of the wedge, measured parallel to the ground.

The kinetic energy of the wedge is given by

TM = 1
2Mq̇2

2

To find the kinetic energy of the little mass, we first compute the x and y coordinates:

xm = q2 + q1 cosα
ym = −q1 sinα

Where we have discarded any other constants, since they won’t end up mattering.The kinetic energy
is then given by

Tm = 1
2
(
ẋ2

m + ẏ2
m

)
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= 1
2m (q̇2 + q̇1 cosα)2 + 1

2m (−q̇1 sinα)2

= 1
2m

(
q̇2

1 sin2 α+ q̇2
2 + q̇2

1 cos2 α+ 2q̇1q̇2 cosα
)

= 1
2m

(
q̇2

2 + q̇2
1 + 2q̇1q̇2 cosα

)
The total kinetic energy is then given by

T = 1
2Mq̇2

2 + 1
2m

(
q̇2

2 + q̇2
1 + 2q̇1q̇2 cosα

)
We can compute the potential energy in the system:

U = −mgq1 sinα

And then write out the Lagrangian:

L = T − U

= 1
2Mq̇2

2 + 1
2m

(
q̇2

2 + q̇2
1 + 2q̇1q̇2 cosα

)
+mgq1 sinα

Now applying the Euler-Lagrange equations (Eqn. 4):

d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

= 0

d

dt
(Mq̇2 +mq̇2 + q̇1 cosα) + 0 = 0

(M +m) q̇2 +mq̇1 cosα = constant

We see that this implies that momentum is conserved along the x direction.

Now we can look at q1:

d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

= 0

d

dt
(mq̇1 +mq̇2 cosα) −mg sinα = 0

mq̈1 +mq̈2 cosα = mg sinα
q̈1 + q̈2 cosα = g sinα

We have two differential equations of two variables, q1 and q2. We can now solve for q1, by eliminating
q2 from this equations. From momentum conservation, we have that

q̈2 = −m cosα
M +m

q̈1

Inserting this into the second diffeq:

q̈1 −
Å
m cos2 α

M +m

ã
q̈1 = g sinαÅ

1 − m cos2 α

M +m

ã
q̈1 = g sinα
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From this, we find that

q̈1 = g sinα
1 − m cos2 α

M+m

Now let us take some limits, in order to check whether this agrees with what we expect. If we take
the M ≫ m limit, we expect the wedge to not move as the block slides down the wedge. In this
case, the acceleration reduces to the expected fixed wedge result, q̈1 = g sinα.

If instead we take α → π
2 , so we have a vertical edge, we obtain that q̈1 = g, which is the expected

freefall result.

Now let us consider a more difficult system. We have a bead on a hoop of radius R, which can
rotate along its central axis. This problem is easiest to solve in spherical coordinates. We measure θ
as the angle from the vertical to the bead, ρ as the horizontal distance from the rotation axis to the
bead, and ϕ as the “inward” and “outward” angle.

The velocity in the ϕ direction is given by

vϕ = ρω

= Rω sin θ

And the velocity in the θ direction is given by

vθ = Rθ̇

Thus the kinetic energy is given by

T = 1
2m

(
v2

ϕ + v2
θ

)
= 1

2m
(
R2θ̇2 +R2 sin2 θω2)

We can measure the potential energy from the bottom of the hoop:

U = mgR (1 − cos θ)

We can then write out the Lagrangian:

L = T − U

= 1
2m

(
R2θ̇2 +R2 sin2 θω2) −mgR (1 − cos θ)

Now writing out the Euler-Lagrange equations (Eqn. 4):

d

dt

Å
∂L
∂θ̇

ã
− ∂L
∂θ

= 0

d

dt

(
mR2θ̇

)
−
(
mR2ω2 sin θ cos θ −mgR sin θ

)
= 0

mR2θ̈ = mR2ω2 sin θ cos θ −mgR sin θ

θ̈ = ω2 sin θ cos θ − g

R
sin θ
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We want to find the equilibrium positions and the frequency of small oscillations. Equilibrium
positions are cases where if θ̇ = 0, then θ̈ is also 0, there is no velocity and no acceleration, the bead
just sits there.

For this problem, equilibrium points satisfy θ̈ = 0 (and we will insert the boundary condition that
θ̇ = 0 later), and thus (

ω2 cos θ − g

R

)
sin θ = 0

From this, we see that there are two possibilities. The first is that sin θ = 0, which gives θ = 0 or
θ = π, which correspond to the bottom and top of the hoop. The second possibility is cos θ = g

Rω
2.

Now let us consider each of these, and determine whether they are stable or unstable, and if they
are stable, the frequency of small oscillations. The first two make sense as equilibrium points, but
what is the third case? Consider the frame of reference of the rotating hoop. In this frame, the
bead has an outwards centrifugal force (pseudoforce generated by our noninertial reference frame),
gravity pulling down, and the normal force of the wire. There will be some value of the angle for
which the centrifugal and gravity forces cancel along the direction parallel to the wire, and the bead
will not move.

Let us denote these equilibrium points as θ0. Let us begin with the one at the top of the hoop,
θ0 = π

2 .

To decide whether this point is stable, let us consider a slight displacement from the equilibrium
point. If the bead rolls back to the equilibrium point, then it is a stable equilibrium, otherwise it is
an unstable equilibrium point.

Consider θ = θ0 − ε = π − ε, a small displacement from the equilibrium. In this case, we can
compute that cos (π − ε) = −1 + O

(
ε2), and sin (π − ε) = ε. We can now insert these into the

relation for θ̈, which is equal to ε̈:

ε̈ =
(
ω2 + g

R

)
ε

We note that the coefficient is positive, so ε increases with time, and thus θ increases with time. Thus
the bead will move away from the equilibrium point, and thus the point is an unstable equilibrium,
which we expected, placing the bead at the top of the hoop is intuitively not stable.

Now let us consider the case where θ0 = 0. In this case, θ = θ0 + ε = ε:

ε̈ =
(
ω2 cos (ε) − g

R

)
sin (ε)

=
(
ω2 − g

R

)
ε

Now let us consider ω2 − g
R . If ω > g

R , then ε grows with time, and the equilibrium is unstable.
However, if ω < g

R , then ε̈ < 0, and the equilibrium is stable, the small shift will lead to the bead
going back down to the bottom. Now let us find the frequency of small oscillations around this
equilibrium point in the case where ω2 − g

R < 0.

We have that

ε̈+
( g
R

− ω2
)
ε = 0
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Recall that this is the simple harmonic motion differential equation, with frequency:

f = 1
2π

…
g

R
− ω2

Now let us consider the final equilibrium point. In this case, cos θ0 = g
Rω2 , and we set θ = θ0 + ε.

We can again compute ε̈:

ε̈ =
(
ω2 cos (θ0 + ε) − g

R

)
sin (θ0 + ε)

=
(
ω2 (cos θ0 − ε sin θ0) − g

R

)
(sin θ0 + ε cos θ0)

=
(
ω2 cos θ0 − εω2 sin θ0 − g

R

)
(sin θ0 + ε cos θ0)

= ω2 cos θ0 sin θ0 − εω2 sin2 θ0 + ε2ω2 cos θ0 sin θ0 − g

R
sin θ0 + ε

g

R
cos θ0

= ω2 cos θ0 sin θ0 − ε

Å
ω2 sin2 θ0 + f

R
cos θ0

ã
− g

R
sin θ0

Where we have applied:

cos (θ0 + ε) = cos θ0 cos ε︸︷︷︸
1

− sin θ0 sin ε︸︷︷︸
ε

sin (θ0 + ε) = sin θ0 cos ε︸︷︷︸
1

+ cos θ0 sin ε︸︷︷︸
ε

Note that this can be derived by using Euler’s identity, eiA = cosA+ i sinA. We also discard terms
of order ε2. We then insert the fact that cos θ0 = g

Rω2 :

ε̈ =
(
−ω2 sin2 θ0

)
ε

= −ω2 (1 − cos2 θ0
)
ε

= −ω2
Å

1 − g2

R2ω4

ã
ε

=
Å

−ω2 + g2

R2ω2

ã
ε

We thus have that

ε̈+
Å
ω2 − g2

ω2R2

ã
ε = 0

This is unstable if ω2 − g2

ω2R2 < 0, which is true if g
ω2R

> 1. Conversely, it will be stable if the
opposite condition is true, g

ω2R
< 1.

2.4.3 Forces of Constraint

Using Lagrangian methods, how can we calculate forces of constraint? This method uses the
functional analogue of Lagrange multipliers.

Let us first review Lagrange multipliers.
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What is the largest area that a rectangle can have if we have the constraint that the perimeter is 8?

Let us solve this in 3 different ways. The first method is to let the area be A, and the sides be
of length a and b. The perimeter is given by 2 (a+ b) = 8, and A = ab. We want to extremize A
subject to the constraint that a + b = 4. We can do this by eliminating b, b = 4 − a, and then
inserting this into the equation for the area, A = a (4 − a). We can then take the derivative and set
it to 0:

dA

da
= 0

4 − 2a = 0

Which gives us that a = b = 2, and A = 4.

The second method is to extremize A with respect to a, but take into account that b is not
independent of a:

dA =
Å
∂A

∂a

ã
da+

Å
∂A

∂b

ã
db

dA

da
=
Å
∂A

∂a

ã
+
Å
∂A

∂b

ãÅ
∂b

∂a

ã
We see that db

da = −1, and we have that

dA

da
= b− a

Setting this equal to 0, we find that a = b, which gives us that a = b = 2, and A = 4.

Finally, the third method is to apply Lagrange multipliers. We first write the constraint equation as
a+b−4 = 0. Now, rather than extremize A, we extremize F = A+λ (a+ b− 4) = ab+λ (a+ b− 4).
We extremize F with respect to a, b, and λ independently:

∂F

∂a
= 0 → b+ λ = 0

∂F

∂b
= 0 → a+ λ = 0

∂F

∂λ
= 0 → a+ b− 4 = 0

From the first two equations, we find that a = b = −λ, and inserting this into the third equation,
we see that a = b = 2.

Now consider Atwood’s machine. We assume that the length of the string is constant:

x+ y + πR = l

This has Lagrangian:

L = 1
2m1ẋ

2 + 1
2m2ẏ

2 +m1gx+m2gy

Now, one way to deal with this would be to use the constraint on the length to eliminate y from the
Lagrangian, and have it be fully in terms of x. We then extremize this with respect to x (t), and
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solve. This is what we did when we considered the Atwood’s machine earlier. However, this does
not easily provide the force of constraint, the tension in the string.

Let us now consider the analogue of method 2, extremizing L with respect to x, keeping in mind
that y is not independent of x.

δS = −
ˆ
dt

ï
d

dt

Å
dL
dẋ

ã
− ∂L

∂x

ò
δx+

ï
d

dt

Å
∂L
∂ẏ

ã
− ∂L
∂y

ò
δy

From the constraint equation, x+ y + πR is constant, and thus δx = −δy:

δS = −
ˆ
dt

ï
d

dt

Å
∂L
∂ẋ

ã
− ∂L
∂x

− d

dt

Å
∂L
∂ẏ

ã
+ ∂L
∂y

ò
δx

Extremizing with respect to δx:ï
d

dt

Å
∂L
∂ẋ

ã
− ∂L
∂x

ò
−
ï
d

dt

Å
∂L
∂ẏ

ã
− ∂L
∂y

ò
= 0

(m1ẍ−m1g) − (m2ÿ −m2g) = 0

Now eliminating y using the constraint equation:

(m1 +m2) ẍ = (m1 −m2) g

Which is the same equation of motion obtained from the first method. However, we again see that
the force of constraint is not easy to obtain.

Let us now discuss the third method, the Lagrange multiplier method. This is the method that
should be used when we care about deriving the force of constraint.

We write the constraint as

(x+ y + πR− l) = 0

We now extremize the value:

L + λ (x+ y + πR− l)

This provides a new action:

S′ =
ˆ
dtL′

=
ˆ
dt [L + λ (t) (x+ y + πR− l)]

This will provide us three equations, by extremizing with respect to x, y, and λ respectively:

m1ẍ−m1g − λ = 0
m2ÿ −m2g − λ = 0
x+ y + πR− l = 0



PHYS610 Lecture Notes Hersh Kumar
Page 55

We now eliminate λ from the first two equations:

m1ẍ−m1g −m2ÿ +m2g = 0

We can then eliminate y using the constraint equation:

ẍ = m1 −m2
m1 +m2

g

How do we obtain the force of constraint? Consider the first equation that we obtained:

m1ẍ = m1g + λ

By Newton’s Law, this is the total force acting on m1. m1g is the force of gravity, and therefore λ
must represent the constraint force, the tension. We can solve for λ by inserting the expression for
ẍ:

λ = m1ẍ−m1g

= −2 m1m2
m1 +m2

g

Why does this method work in the general case? We will show that the Langrange multiplier method
is basically equivalent to the second method we used. Consider a Lagrangian that is a function of
two coordinates, q1 and q2, L = L (q1, q2, q̇1, q̇2), where the two coordinates are not independent,
but are related by some constraint g (q1, q2) = 0. We can obtain the equations of motion by using
the second method:

δs = −
ˆ
dt δL

= −
ˆ
dt

ï
d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

ò
δq1 +

ï
d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

ò
δq2

= −
ˆ
dt

ï
d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

+
Å
d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

ã
δq2
δq1

ò
δq1

We require that this vanish for arbitrary q1:ï
d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

ò
+ δq2
δq1

ï
d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

ò
= 0

From the constraint equation g (q1, q2) = 0, we have that

∂g

∂q1
δq1 + ∂g

∂q2
δq2 = 0

δq2
δq1

= −
∂g
∂q1
∂g
∂q2

We can now insert this into our previous equation:ï
d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

ò
−

∂g
∂q1
∂g
∂q2

ï
d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

ò
= 0
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We then eliminate q2 in favor of q1 using the constraint equation, and we obtain the equation of
motion for q1.

Now let us prove that this method is mathematically equivalent to the Lagrange multiplier method.

Using the Lagrange multiplier method:

S′ =
ˆ
dt [L + λg (q1, q2)]

We then extremize this with respect to q1,q2, and λ, treating them as independent variables:

d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

− λ
∂g

∂q1
= 0

d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

− λ
∂g

∂q2
= 0

g (q1, q2) = 0

Eliminating λ from the first two equations, we see that we are left with the result from method 2:ï
d

dt

Å
∂L
∂q̇1

ã
− ∂L
∂q1

ò
−

∂g
∂q1
∂g
∂q2

ï
d

dt

Å
∂L
∂q̇2

ã
− ∂L
∂q2

ò
= 0

We can again eliminate q2 via the constraint equation to obtain the equation of motion for q1.

How do we find the forces of constraint? Looking at the extremization with respect to q1, we see
that

d

dt

Å
∂L
∂q̇1

ã
= ∂L
∂q1

+ λ
∂g

∂q1

The first term is the generalized force, and the second term is the generalized force of constraint.
However, we care about the actual force of constraint, not the generalized force of constraint. To
determine the force of constraint, we assume that the generalized force of constraint is associated
with a potential:

λ
∂g

∂q1
= −∂Vc

∂q1

Then the force of constraint is given by

Fc = −∇Vc

= −∂Vc

∂q1
∇q1

= λ
∂g

∂q1
∇q1

This will give the force of constraint for q1. If q2 describes the location of the same particle as q1,
then there is an additional contribution to the force of constraint:

Fc = λ
∂g

∂q1
∇q1 + λ

∂g

∂q2
∇q2
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Consider a block of mass m sliding down a fixed ramp of angle θ. We want to find the normal
force using the Lagrangian formalism. We choose y to be the vertical coordinate, and x to be the
horizontal coordinate. We can write out the Lagrangian:

L = 1
2m

(
ẋ2 + ẏ2) −mgy

In these coordinates, the constraint is that the block must stay on the wedge, so y = x tan θ. We
can then define the new Lagrangian:

L′ = 1
2m

(
ẋ2 + ẏ2) −mgy + λ (y − x tan θ)

Now we obtain the equations of motion:

mẍ+ λ tan θ = 0
mÿ +mg + λ = 0

Eliminating λ:

mẍ+ (mÿ +mg) tan θ = 0

We now apply the constraint to remove y:

mẍ+ d2

dt2
(x tan θ) tan θ +mg tan θ = 0

Working through this, we are left with

ẍ
(
1 + tan2 θ

)
+ g tan θ = 0
ẍ sec2 θ = −g tan θ

ẍ = −g sin θ cos θ

From this, we have that ÿ = −g sin2 θ. Writing out the acceleration as a vector:

a = −g sin θ
Å

cos θ
sin θ

ã
The magnitude of the acceleration is g sin θ, down the slope. Now we want to find the normal force,
so we can pick one of the equations of motion. We can rewrite λ:

λ = mg +mÿ

= mg
(
1 − sin2 θ

)
= mg cos2 θ

We can write out the force of constraint:

Fc = −λ tan θx̂+ λŷ
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= −mg cos θ
Å

sin θ
− cos θ

ã
Let us consider this same problem in a more convenient coordinate system. We have coordinate
l, which is the distance down the wedge, and w, the perpendicular distance from the wedge.
In this coordinate system, the kinetic energy is 1

2m
(
l̇2 + ẇ2). The potential energy is given by

mgl sin θ +mgw cos θ. This gives us Lagrangian:

L = 1
2m

(
l̇2 + ẇ2) −mg (l sin θ + w cos θ)

Now we introduce the constraint, w = 0:

L′ = 1
2m

(
l̇2 + ẇ2) −mg (l sin θ + w cos θ) + λw

The equations of motions obtained from this are:

ml̈ +mg sin θ = 0
mẅ − λ+mg cos θ = 0

From the second equation and the constraint equation, we have that λ = mg cos θ. From the first
equation, we have that l̈ = −g sin θ. The normal force can then be computed as:

Fc = mg cos θŵ

Now let us consider a bead of mass m threaded through a very narrow rod of length l. The bead is
free to slide without friction along the rod. The rod is fixed at one end, but is free to rotate in the
horizontal plane about the fixed end. If the rod is rotating counterclockwise with constant angular
velocity ω, find the equations of motion for the bead, and the force exerted by the rod on the bead.
Neglect gravity.

Looking at the rod from a top-down perspective, we have two coordinates, the angle of the rod with
a set horizontal position, ϕ, and the location of the bead on the rod, ρ. The angle is related to the
angular velocity, ϕ = ωt. We can write out the Lagrangian:

L = 1
2m

(
ρ̇2 + ρ2ϕ̇2)

The modified Lagrangian is given by

L′ = 1
2m

(
ρ̇2 + ρ2ϕ̇2) + λ (ϕ− ωt)

This produces the equations:

mρ̈−mρϕ̇2 = 0
d

dt

(
mρ2ϕ̇

)
= λ

Now noting that ϕ̇ = ω:

mρ̈−mρω2 = 0
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d

dt

(
mρ2ω

)
= λ

The first equation simplifies down to

ρ̈ = ρω2

This is a linear equation, and has solutions that are hyperbolic sines and cosines:

ρ (t) = A cosh (ωt) +B sinh (ωt)

Where A and B are determined by the initial conditions. The second equation of motion that we
have gives us

2mρω2ρ̇ = λ

Now noting that λ = −∂Vc
∂ϕ , the potential for the force of constraint:

Fc = −∇Vc

= −∂Vc

∂ϕ
∇ϕ

= +1
ρ

[2mρρ̇ω] ϕ̂

= 2mρ̇ωϕ̂

2.4.4 Two Body Central Force Problem

Consider two particles with masses m1 and m2, located at r1 and r2. The only force acting on them
is from their mutual interaction, which is assumed to be conservative, so it can be derived from a
potential. Translational invariance implies that the force depends only on their relative positions:

U (r1, r2) = U (r1 − r2)

If a conservative force is central, then

U (r1 − r2) = U (|r1 − r2|)

We only care about the magnitude of the distance, and the force is along the line joining the two
particles. It is thus convenient to introduce a relative position coordinate:

r = r1 − r2

In which case the potential is just dependent on the magnitude of r :

L = 1
2m1ṙ2

1 + 1
2m2ṙ2

2 − U (|r|)

What generalized coordinates should we use? So far, we have 9 coordinates, 3 for each of r1, r2,
and r. Instead, we consider the ‘center of mass’:

R = m1r1 +m2r2
m1 +m2
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These are the two coordinates that we use, R and r. We define a total mass m = m1 +m2:

R = r2 + m1r

m

Note that the vector R points along the line joining the two particles.

Why is R a good choice of coordinates? We take advantage of the conservation of momentum:

d

dt
(m1ṙ1 +m2ṙ2) = 0

(m1ṙ1 +m2ṙ2) = p

Where the momentum p is constant. From this, we find that the center of mass moves with constant
velocity:

d

dt
(MR) = p

Ṙ = constant

The system behaves as if the total mass was entirely located at the center of mass, and the center
of mass is moving at a constant velocity. It is straightforward to choose coordinates such that the
center of mass is not moving. In this frame, known as the center of mass frame or the center of
momentum frame, the problem is especially simple.

We can write out r1 and r2 in terms of the center of mass position, and then write out the kinetic
energy:

T = 1
2 (m1ṙ1 +m2ṙ2)

= 1
2MṘ + 1

2M
m1m2
M2 ṙ2

We define a parameter µ known as the reduced mass:

µ = m1m2
M

= m1m2
m1 +m2

Using this, we have that

T = 1
2MṘ2 + 1

2µṙ2

We see that we split up the kinetic energy into two parts, the kinetic energy of the center of mass,
and the kinetic energy from the relative motion of the two particles. From the kinetic energy, we
now consider the Lagrangian:

L = 1
2MṘ2 + 1

2µṙ2 − U (|r|)

= LCoM + Lrelative

We see that the Lagrangian nicely splits into two separate Lagrangians, which, since there is no
interaction between them, we can solve them separately. Also note that R is a cyclic coordinate,
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it only appears in the Lagrangian in the form of its derivatives. When we write the equation of
motion for a cyclic coordinate q, we will find that ∂L

∂q̇ is a constant. In this case, R being a cyclic
coordinate indicates that total momentum is conserved.

For the center of mass motion:

mR̈ = 0

Which we already knew. Looking at the relative motion:

Lrelative = 1
2µṙ2 − U (|r|)

This is the same as the Lagrangian of a particle of mass µ moving in a central potential. From this,
we find that

µr̈ = −∇U (|r|)

In the case where we are in the center of mass frame, then we can throw out the center of mass
term entirely, and we have reduced the problem to a 1 body problem, where we keep track of the
relative position of the two particles, rather than both of their positions. In this frame, the two
masses must have equal and opposite momenta.

Let us consider the conservation of angular momentum. In the center of mass frame, we have that

L = r1 × p1 + r2 × p2
...
= µr × ṙ

In the center of mass frame, we can think of this as again being a particle of mass µ moving in a
central potential. Since the total angular momentum is conserved, then

r × ṙ = constant

This is a vector perpendicular to both r and ṙ. We note that this vector will always be perpendicular
to the plane that r and ṙ share, and therefore, since it is constant, the motion of the system must
be restricted to the plane.

We began with 6 coordinates, brought it down to 3 via the center of mass, and now we have planar
motion, which brings us down to 2 coordinates, we can disregard any motion in the direction
perpendicular to the plane.

Now that we know the motion is planar, we can work in cylindrical coordinates (where z = 0):

L = 1
2µṙ2 + 1

2µr
2ϕ̇2 − U (r)

Since L doesn’t explicitly depend on ϕ, it is a cyclic coordinate, and thus

d

dt

(
µr2ϕ̇

)
= 0

And thus µr2ϕ̇ is constant. This is the statement of conservation of angular momentum:

µr2ϕ̇ = L
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From here, we finally have to start working with nontrivial equations. We can use the radial
Euler-Lagrange :

µr̈ = −dU

dr
+mrϕ̇2

Now substituting in the relation between angular momentum and ϕ̇:

µr̈ = −dU

dr
+ L2

µr3

If we can solve this for r, then we are done. This is the equation of motion of a particle of mass µ
moving some potential that depends on a single variable. We see that this is a massive simplification
compared to the original problem setup. In particular, this has the form of Newton’s Second Law
for a particle in one dimension subject to the actual force −dU

dr and a fictitious centrifugal force

Fcf = L2

µr3

This centrifugal force can be obtained from a “centrifugal potential”:

Fcf = − d

dr

Å
L2

2µr2

ã
= − d

dr
Ucf

The radial equation then becomes

µr̈ = − d

dr

Å
L2

2µr2 + U(r)
ã

︸ ︷︷ ︸
Ueffective

Now note that we have a particle in one dimension moving under the action of a conservative force.
This leads to conservation of energy. We have Newton’s Second Law:

µr̈ = −dUeff
dr

Multiplying by ṙ:

µṙr̈ = −ṙ dUeff
dr

Now integrating both sides:
ˆ
µṙr̈ dt = −

ˆ
dr

dt

dUeff
dr

dt

1
2µṙ

2 = Ueff(r) + E

1
2µṙ

2 + Ueff (r) = E

We see that the total energy is a constant, denoted E. From here, we can solve this relation for ṙ:

ṙ =
 

2
µ

(E − Ueff (r))
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We can then integrate this with respect to t in order to find r (t), and we will have solved the
problem. There are only a few analytically solvable cases of this problem, but we see that we have
simplified this greatly.

Let us consider this problem in the case of an inverse square law potential:

U (r) = −Gm1m2
r

= −γ

r

In this case, the effective potential becomes

Ueff = −γ

r
+ l2

2µr2

We see that the first term is always negative, goes to 0 as r → ∞, and goes to −∞ as r → 0. The
second term is always positive, and has the opposite behavior near 0, Ucf → ∞. Very close to 0, the
centrifugal term wins, and so we go to ∞ near r → 0, but we have a well for r slightly larger than
zero, where the 1/r potential wins out over the 1/r2 potential.

We see that this potential has unbound orbits, where the energy of the incoming particle is positive,
the particle approaches the origin and then reflects back out to ∞. The bound orbits have negative
energy, and get trapped in the well.

Suppose we have a bound state, which oscillates between r = rmin and r = rmax, inside the well.
These points correspond to points where ṙ = 0, the energy is equal to the potential:

Ueff (r) = E

Also note that the case where E is exactly equal to Ueff at the bottom of the well, corresponds to
circular motion, the radius between the two objects does not change.

Since ϕ̇ = L/µr2, as r changes, ϕ is also changing. For bound orbits, r oscillates between rmin and
rmax, but we never switch directions in the orbit, ϕ̇ always maintains the same sign.

2.5 Noether’s Theorem
Theorem 2.1. Noether’s Theorem. Corresponding to every continuous symmetry transformation
of the Lagrangian, there exists a conserved current.

Conservation of energy, charge, and momentum, all can be derived from symmetries in the Lagrangian.
For example, the U (1) symmetry of QED leads to conservation of charge.

Consider Newton’s Law:

F = ma

Which can be written in component form:
Fx = max

Fy = may

Fz = maz
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The benefit of writing it in vector form is that we define how F and a transform under rotations.
We say that both sides of the equation change covariantly under rotations, they change in the same
way given a rotation of the coordinate system. Similarly, the moment of inertia is related to the
angular moment and the angular velocity:

L = I · ω

In this case, L and ω are vectors, and I is a tensor.

In the case of electrodynamics, we can write Maxwell’s equations as:

∂µF
µν = jµ

εµνλσ∂νFλσ = 0

Which is invariant under Lorentz transformations.

Let us prove Noether’s theorem for a few symmetries. First, let us show that momentum conservation
is a consequence of translation symmetry.

The laws of physics are invariant under translation, if we move a system from point a to point b,
the system should behave the same way. By Noether’s theorem, there must be a corresponding
conserved current. We will show that the conserved current leads to momentum conserved.

Consider a system of particles with pairwise interactions in one dimension. The Lagrangian is given
by

L = 1
2

∑
i

miẋ
2
i +

∑
i,j

V (xi − xj)

Consider a change of coordinates xi → x′
i = xi − a (where a is infinitesimal2), we shift all the

coordinates by the same amount. This is a symmetry transformation:

dx′
i

dt
= d

dt
(xi − a)

= ẋi

Thus the Lagrangian in the new coordinates is just:

L′ = 1
2

∑
i

miẋ
′2
i +

∑
i,j

V
(
x′

i − x′
j

)
= 1

2
∑

i

miẋ
2
i +

∑
i,j

V (xi − xj)

We see that nothing changes, the Lagrangian is “form-invariant” under this translation. In particular,
this implies that the action is also the same:

ˆ
dtL (xi, ẋi) =

ˆ
dtL

(
x′

i, ẋ
′
i

)
The action is “scale-invariant” under this transformation. This is the main condition that we choose
to determine symmetries in a system. In this case, we see that translation is a symmetry of the
theory.

2Required because we need the symmetry to be continuous, Noether’s theorem has no discrete analogue.



PHYS610 Lecture Notes Hersh Kumar
Page 65

Now let us consider the difference between the Lagrangian in both coordinates, which is zero by
form invariance:

L
(
x′

i, ẋ
′
i

)
− L (xi, ẋi) = 0

Which (for infinitesimal a), can be written as

∑
i

∂L
∂xi

δxi +
∑

i

∂L
∂ẋi

δxi = 0

Now we note that δxi = x′
i − xi = a, and δẋi = 0. Thus we have that

∑
i

∂L
∂xi

= 0

At this point, we insert the equations of motion (Noether’s theorem only applies to the classical
path, which means that we have to constrain everything with the equations of motion):

∑
i

∂L
∂xi

= 0

∑
i

d

dt

Å
∂L
∂ẋi

ã
= 0

d

dt

Ç∑
i

∂L
∂ẋi

å
︸ ︷︷ ︸

total momentum

= 0

We see that by definition, this is the time derivative of the total momentum, and we have extracted
that the total momentum is conserved. Anytime that we have a theory that is translationally
invariant, we will always extract momentum conservation, and thus all theories that we write down
should have translational invariance.

Let us now consider energy conservation. We will show that this arises from time translation
invariance, the laws of physics are the same at all times.

Consider a Lagrangian L [x (t) , ẋ (t)] that does not depend explicitly on time, any time dependence
is through the fact that x and ẋ depend on time. Consider a change of coordinate t → t′ = t+ ε,
where ε is infinitesimal.

If we do this change of coordinates, we have that x (t) = x (t′ − ε) = x′ (t′), where we define a new
function x′. For constant ε:

dx

dt
= dx′

dt

= dx′

dt′
dt′

dt

= dx′

dt′

Then we can consider the Lagrangian:

L [x (t) , ẋ (t)] = L
[
x′ (t′) , ẋ′ (t′)]
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We see that once again the Lagrangian is form-invariant. We can look at the action integral:

ˆ tB

tA

dtL [x (t) , ẋ (t)] =
ˆ tB+ε

tA+ε
dt′ L

[
x′ (t′) , ẋ′ (t′)]

The only difference here is the limits, which doesn’t matter. The functional form of the integrals
are the same, which gives us scale invariance. Thus we see that time translation is a symmetry of
the system.

Let us now subtract the left hand side from the right hand side:

ˆ tB+ε

tB

dt′ L
[
x′ (t′) , ẋ′ (t′)] +

ˆ tA

tA+ε
dt′ L

[
x′ (t′) , ẋ′ (t′)] +

ˆ tB

tA

dt
(
L
[
x′ (t) , ẋ′ (t)

]
− L [x (t) , ẋ (t)]

)
= 0

What we have done is broken the right hand side into 3 integrals, an integral from tA to tB, an
integral from tB to tB + ε, and an integral from tA to tA + ε. For the integrals over the interval of
size ε, we argue that the Lagrangian doesn’t have enough time to change by very much, and thus

ˆ tB+ε

tB

dt′ L
[
x′ (t′) , ẋ′ (t′)] = εL

[
x′ (tB) , ẋ′ (tB)

]
And similarly for the other integral of interval size ε. We also rewrite the third integral, using a
similar form as the case of momentum conservation:

εL
[
x′ (tB) , ẋ′ (tB)

]
− εL

[
x′ (tA ẋ′ (tA)

)]
+
ˆ tB

tA

dt

ï
∂L
∂x

δx+ ∂L
∂ẋ

δẋ

ò
= 0

Now we can compute δx and δẋ:

δx = x′ (t) − x (t)
= x (t− ε) − x (t)
= −εẋ

δẋ = ẋ′ (t) − ẋ (t)

= −ε d
dt
ẋ

Where we have Taylor expanded x (t− ε) in order to produce the ẋ. We now replace the x′s in the
first two terms with xs, which we can do because the change is of order ε, and the two terms are
already of order ε, so we disregard the O

(
ε2) changes. We also insert our expressions for δx and δẋ

into the third term:

εL [x (tB) , ẋ (tB)] − εL [x (tA) , ẋ (tA)] +
ˆ tB

tA

dt

ï
∂L
∂x

(−εẋ) + ∂L
∂ẋ

Å
−ε d

dt
ẋ

ãò
= 0

Now we combine the first two terms into an integral:

εL [x (tB) , ẋ (tB)] − εL [x (tA) , ẋ (tA)] = ε

ˆ tB

tA

dt
dL
dt
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For the last term, we now insert the equation of motion:

∂L
∂x

= d

dt

∂L
∂ẋ

And thus we have that

ε

ˆ tB

tA

dt
∂L
∂t

+
ˆ tB

tA

dt

Å
−εẋ
Å
d

dt

Å
∂L
∂ẋ

ãã
− ε

∂L
∂ẋ

d

dt
ẋ

ã
= 0

ε

ˆ tB

tA

dt
∂L
∂t

+
ˆ tB

tA

dt
d

dt

Å
−εẋ∂L

∂ẋ

ã
= 0

Where we notice that the second integrand is a total derivative. We can now merge everything:

ε

ˆ tB

tA

dt
d

dt

ï
L − ẋ

∂L
∂ẋ

ò
= 0

The limits of integration here are arbitrary, so the integrand must be zero for all choices of time.
Thus we have that

d

dt

Å
L − ẋ

∂L
∂x

ã
= 0

Now we notice that this is just the definition of the Hamiltonian (up to a sign), which is the total
energy in the system:

d

dt
H = 0

And thus we have conservation of energy.

2.6 Hamiltonian Mechanics
2.6.1 Hamilton’s Equations

The basis of Lagrangian mechanics is the Lagrangian:

L = T − U

which is the function of the generalized coordinates and their time derivatives. The coordinates
specify the configuration of the system at a particular time, which can be thought of as defining a
point in an n dimensional configuration space. The 2n coordinates (q1, q2, . . . , qn, q̇1, . . . , q̇n) define
a point in state space, and specify a set of initial conditions that determine a unique solution of the
n second order differential equations, Lagrange’s equations.

In Hamiltonian dynamics, the central role is played by the Hamiltonian H, defined by

H =
∑

i

piq̇i − L

The equations of motion involve derivatives of H rather than derivatives of L. If the Lagrangian
is time independent, as we just saw, H is constant. Just as the 2n coordinates in the Lagrangian
case define a point in state space, the 2n coordinates in the Hamiltonian determine a unique point
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in phase space. Hamilton’s equations determine a path in phase space, starting from some initial
configuration.

Let us derive Hamilton’s equations for a 1 dimensional system.

We begin with the Hamiltonian:

H = pq̇ (q, p) − L (q, q̇ (q, p))

Here q̇ is determined implicitly from the definition of p:

∂L
∂q̇

= p → q̇ (q, p)

Now we can take the derivative of the Hamiltonian with respect to position, holding p fixed:Å
∂H
∂q

ã
p

= p

Å
∂q̇

∂q

ã
p

−


Å
∂L
∂q

ã
q̇

+
Å
∂L
∂q̇

ã
q︸ ︷︷ ︸

p

Å
∂q̇

∂q

ã
p


= −
Å
∂L
∂q

ã
q̇

= − d

dt

Å
∂L
∂q̇

ã
= −dp

dt

Where we have inserted the Euler-Lagrange’s equation (Eqn 4). This is the first of Hamilton’s
equations. Now let us consider the derivative with respect to p, holding q fixed:Å

∂H
∂p

ã
q

= q̇ (q, p) + p

Å
∂q̇

∂p

ã
q

−
Å
∂L
∂q̇

ã
q

Å
∂q̇

∂p

ã
q

= q̇

This gives us the second of Hamilton’s equations. Together, we have thatÅ
∂H
∂p

ã
q

= q̇ (5)Å
∂H
∂q

ã
p

= −ṗ (6)

In the Lagrangian approach, for a system with one degree of freedom, we obtain a single second
order equation of motion, while in the Hamiltonian approach, we obtain 2 first order equations of
motion.

Let us do an example. Consider the Atwood’s machine.

The Lagrangian for this system is given by:

L = 1
2m1ẋ

2 + 1
2m2ẏ

2 +m1gx+m2gy
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Which we can rewrite as

L = 1
2 (m1 +m2) ẋ2 + (m1 −m2) gx

Now we can solve for p:

p = ∂L
∂ẋ

= (m1 +m2) ẋ

We can now eliminate ẋ in favor of p in the Lagrangian:

L = 1
2

p2

m1 +m2
+ (m1 −m2) gx

The Hamiltonian is then:

H = pẋ− L

= p2

m1 +m2
− L

= 1
2

p2

m1 +m2
− (m1 −m2) gx

We can then compute Hamilton equations:

∂H
∂x

= −ṗ

ṗ = (m1 −m2) g

And the other equation gives:

∂H
∂p

= ẋ

ẋ = p

m1 +m2

From this, we have that

ẍ = m1 −m2
m1 +m2

g

Which is exactly what we expect.

Why is the Hamiltonian formalism worth using if it gets the same result as the Lagrangian formalism?
Looking at Hamilton’s equations, we see that they have a symmetry built into them, known as a
symplectic symmetry.

∂H
∂p

= q̇

∂H
∂q

= −ṗ

This symplectic structure underlies all of classical mechanics. Another benefit is that the Hamiltonian
formalism allows for coordinate transformations to be done much more easily. We also are guaranteed
unitarity, but we lose Lorentz invariance, while the Lagrangian loses unitarity, but maintains Lorentz
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invariance. Each method has its pros and cons when applying the formalisms to quantum mechanics
and quantum field theory.

Let us now consider Hamilton’s equations when we have more than 1 degree of freedom. Suppose
the configuration of the system is described by n coordinates, q1, q2, . . . , qn. The corresponding
generalized velocities are q̇1, q̇2, . . . , q̇n. The Langrangian will be a function of these, L (qi, q̇i, t).
The generalized momenta are given by pi =

Ä
∂L
∂q̇i

ä
, and the Hamiltonian is given by

H (qi, pi,L) =
∑

i

piq̇i − L

H is a function of n generalized coordinates and n generalized momenta. By following the same
procedure as the 1 degree of freedom case, we find Hamilton’s equations for a system with n degrees
of freedom:

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

These are 2n first-order differential equations.

Let us do an example. Consider a particle in a central force field. Recall that in polar coordinates,
the kinetic and potential energies are given by

T = 1
2m

(
ṙ2 + r2ϕ̇2)

U = U (r)

To solve this, we first write down the Lagrangian:

L = T − U

= 1
2m

(
ṙ2 + r2ϕ̇2) − U (r)

Now we compute the conjugate momenta, pr and pϕ:

pr = ∂L
∂ṙ

= mṙ

pϕ = ∂L
∂ϕ̇

= mr2ϕ̇

Note that once again, pϕ is the angular momentum (see the Lagrangian treatment of the central
force problem in Section 2.4.4). We can now write down the Hamiltonian:

H = mṙ2 +mr2ϕ̇2 − 1
2m

(
ṙ2 + r2ϕ̇2) + U (r)

= 1
2mṙ

2 + 1
2mr

2ϕ̇2 + U (r)

= p2
r

2m +
p2

ϕ

2mr2 + U (r)
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Unsurprisingly, since L has no explicit time dependence, the Hamiltonian is just the sum of kinetic
and potential energy.

We can now apply Hamilton’s equations to r:

∂H
∂r

= −ṗr

−
p2

ϕ

mr3 + dU

dr
= −ṗr

∂H
∂pr

= ṙ

pr

m
= ṙ

Now we can write down the set of the equations for ϕ:

∂H
∂ϕ

= −ṗϕ

0 = −ṗϕ

∂H
∂pϕ

= ϕ̇

pϕ

mr2 = ϕ̇

We see that two of the four equations just give us the definitions of the ps in terms of the coordinates,
while the other two carry the dynamical information about the system. The fact that ṗϕ = 0 tells
us that angular momentum is conserved. We can look at the first equation we wrote down:

−
p2

ϕ

mr3 + U ′ (r) = −mr̈

We can eliminate pϕ:

mr̈ = −∂U

∂r
+ l2

mr3

This agrees with our Lagrangian result for the central force problem.

2.6.2 Phase Space Orbits

We can rewrite Hamilton’s equations as:

q̇i = ∂H
∂pi

= fi (qj , pj)

ṗi = −∂H
∂qi

= gi (qj , pj)
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We now introduce the 2n dimensional vectors:

z =



q1
...
qn

p1
...
pn


h =



f1 (qj , pj)
...

fn (qj , pj)
g1 (qj , pj)

...
gn (qj , pj)


We can then rewrite Hamilton’s equations as a vector equation:

ż = h (z)

z defines the “position” of the system in phase space. This first order differential equation tells us
how the system is evolving in phase space. Any point z0 defines a possible initial condition of the
system. Hamilton’s equations then define a unique “phase space orbit” or trajectory z (t) which
states from z0 at time t = t0.

One thing that is clear from this is that there is only a single orbit that passes through each point
in phase space, provided that the Lagrangian has no explicit time dependence.

Let us do an example. Consider the one-dimensional harmonic oscillator:

L = 1
2mẋ

2 − 1
2kx

2

We can compute the momentum:

p = ∂L
∂ẋ

= mẋ

Eliminating ẋ in favor of p, and writing out the Hamiltonian:

H = pẋ− L

= p2

2m + 1
2kx

2

As expected, since the Lagrangian has no explicit time dependence, we recover the energy in the
system.

We can now apply Hamilton’s equations:

∂H
∂p

= ẋ

p

m
= ẋ

∂H
∂x

= −ṗ

kx = −ṗ
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Eliminating p, we have that

kx = −mẍ

as expected, and by convention, we defined ω2 = k
m :

ẍ = −ω2x

Which has solutions

x = A cos (ωt− δ)
p = −mAω sin (ωt− δ)

Let us now trace out the trajectory in phase space that this oscillator takes.

The phase space for this system is 2 dimensional, with coordinates given by (x, p). Rewriting the
expressions for the coordinates:

x

A
= cos (ωt− δ)

p

mAω
= − sin (ωt− δ)

Using the fact that cos2 θ + sin2 θ = 1, we have that
x2

A2 + p2

m2A2ω2 = 1

This is the equation that defines an ellipse. The phase space orbit looks like an ellipse. Note that
this is going clockwise, if we’re sitting on the x axis, the sin (ωt− δ) term will be positive for small
t, and thus p will become negative, so we have to be going clockwise.

2.6.3 Conservation Laws in the Hamiltonian Formalism

We first show that if H does not depend explicitly on time, H = H (p, q), then H is a constant of
the motion. We can compute dH

dt :
dH
dt

=
∑

i

ï
∂H
∂qi

q̇i + ∂H
∂pi

ṗi

ò
From Hamilton’s equations, ∂H

∂qi
= −ṗi and ∂H

∂pi
= q̇i. Inserting these:

dH
dt

=
∑

i

[(−ṗi) q̇i + (q̇i) ṗi]

= 0

If there was explicit time dependence, we would have an additional ∂H
∂t term. Thus, in the case of

no explicit time dependence, H is a constant.

Next, let us show that if qi is a cyclic coordinate (it does not appear in the Lagrangian), then its
conjugate momentum pi is conserved. This can easily be shown by noting that

−ṗi = ∂H
∂qi

And if q̇i does not appear in the Lagrangian, then H will also not contain qi. Thus this derivative is
0, and ṗi = 0, so pi is conserved.
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2.6.4 Hamilton’s Equations from a Least Action Principle

We have extremized the action in order to obtain the Euler-Lagrange equations:

S =
ˆ t2

t1

dtL (qi, q̇i, t)

Where δq (t1) = δq (t2) = 0. What we now want to do is to obtain Hamilton’s equations from the
least action principle.

We define the action in the same way:

S =
ˆ t2

t1

dtL (qi, q̇i, t)

=
ˆ t2

t1

dt

Ç∑
i

piq̇i − H
å

Let us treat S as a functional of qi (t) and pi (t), and vary it with respect to these functions
independently. This is different than the Lagrangian case, where we considered variations in only
the path qi (t). In that case, q̇i (t) does not vary independently. Instead, we will treat q and p on
the same footing, as we do when we define the Hamiltonian (as a function of both q and p).

We can compute the change in the action:

δS =
ˆ t2

t1

dt

ñ∑
i

δpiq̇i + piδq̇i −
∑

i

∂H
∂pi

δpi + ∂H
∂qi

δqi

ô
Now we integrate by parts, piδq̇i = d

dt (piδqi) − δqiṗi, and then gather terms:

δS =
ˆ t2

t1

dt

ñ∑
i

Å
q̇i − ∂H

∂pi

ã
δpi −

∑
i

Å
ṗi + ∂H

∂qi

ã
δqi +

∑
i

d

dt
(piδqi)

ô
Now noting that the integral of the time derivative term can be computed using the FTC:ˆ

dt
d

dt

Ç∑
i

piδqi

å
=

∑
i

piδqi|t2 − piδqi|t1

Since the variation at the endpoints is 0, this term is zero, and drops out of the integral. Thus we
are left with

δS =
ˆ t2

t1

dt

ñ∑
i

Å
q̇i − ∂H

∂pi

ã
δpi −

∑
i

Å
ṗi + ∂H

∂qi

ã
δqi

ô
Thus we have that these two terms must vanish at the extremum:

q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

Which is Hamilton’s equations.

There is one interesting feature of this derivation, which is that we exploit the fact that δqi = 0
at the endpoints, but we never need the condition that δpi = 0 at the endpoints, so we break the
“symmetry” between q and p3.

3In the path integral formulation of quantum mechanics, we implicitly break this symmetry of holding x and p fixed
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2.6.5 Liouville’s Theorem

Theorem 2.2. Liouville’s Theorem. Consider a region in phase space, and follow its evolution
over time. In general, the shape of the region will change. The volume of this region in phase space
remains constant with respect to time.

Proof. Let us consider the 1 dimensional case (the general case follows from the 1D case). The idea
of the proof is to consider a region, which is composed of an infinite number of tiny rectangles in
phase space, and we will show that the area of each tiny rectangle remains constant, even though
the rectangles change in shape. Therefore the overall area of any region must also remain constant
while it changes shape.

Consider a rectangular element given by the points (qA, pA), (qB, pB), (qC , pC), and (qD, pD). These,
after some time, are shifted to (q′

A, p
′
A), (q′

B, p
′
B), (q′

C , p
′
C), and (q′

D, p
′
D), respectively. The argument

for why this region remains closed is that the trajectory for any point in phase space is unique, and
the boundary points will remain the boundary points, and points inside the region will never leave
the region.

Since the original shape was chosen to be a rectangle, we have that qA = qB, pA = pB, qB = qC , and
pC = pB. We define qB − qA = qC − qD = ∆q, and pD −pA = pC −pB = ∆p. Consider the evolution
of our region for an infinitesimal timestep ∆t. Note that ∆q, ∆p, and ∆t are all infinitesimal, but
not comparably infinitesimal:

q̇∆t ≪ ∆q
ṗ∆t ≪ ∆p

The distance travelled in our timestep is much less than the length of the rectangle along the q axis.

Now applying Hamilton’s equations:

ṗ = −∂H
∂q

q̇ = ∂H
∂p

For simplicity, let us assume that H has no explicit time dependence.

We can compute q′
A :

q′
A = qA +

ˆ t0+∆t

t0

∂H
∂p

dt

We now Taylor expand ∂H
∂p :

∂H
∂p

= ∂H
∂p

∣∣∣
pA,qA

+
ñÅ

∂2H
∂p2

ã
qA,pA

Å
dp

dt

ã
qA,pA

(t− t0) +
Å
∂2H
∂p∂q

ã
qA,pA

Å
dq

dt

ã
qA,pA

(t− t0)
ô

due to the uncertainty principle, if we hold ∆x = 0 at the endpoints, p at the endpoints must necessarily be
allowed to float.
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If we insert this into the integral that we have, we see that the second term will give us terms of
order (∆t)2, which we neglect. For this reason, we only keep the first term:

q′
A = qA +

ˆ t0+∆t

t0

Å
∂H
∂p

ã
qA,pA

dt

= qA +
Å
∂H
∂p

ã
qA,pA

∆t

We can repeat this process for q′
B:

q′
B = qB +

Å
∂H
∂p

ã
qB ,pB

∆t

= qA + ∆q +
Å
∂H
∂p

ã
qA+∆q,pA

∆t

= qA + ∆q +
Å
∂H
∂p

ã
qA,pA

∆t+
Å
∂2H
∂q∂p

ã
qA,pA

∆t∆q

We see that q′
B and q′

A have a relative change, given by only the termÅ
∂2H
∂q∂p

ã
qA,pA

∆t∆q

We can repeat this process for all 8 shifted coordinates, and then compute the area of the new
region. The rectangle becomes a parallelogram, and we know the relative locations of the vertices,
and therefore we can compute the area, by taking the cross product of the vectors representing two
adjacent sides. We find that the area is given by

A = ∆p∆q + O
(
∆p∆q∆t2

)
We recover the original area, and we pick up a negligible term, and thus the area of the infinitesimal
rectangle is conserved. From this, the area of any region is conserved.

2.6.6 Liouville’s Equation

Consider a scenario in which we have a very large number N of identical, noninteracting systems,
all governed by the same Hamiltonian. We can define a “density function” which gives information
about the number of systems in the neighborhood of a point (p, q) in phase space. This is an
important consideration when doing chaos theory, plasma physics, and accelerator physics. The
density function ρ (q, p, t) is integrated over an area in phase space:

ˆ q+∆q,p+∆p

q,p
ρ (q, p, t)

∏
i

dqidpi = n

Where n is the number of systems in the region of phase space we are integrating over. Integrating
over all space, we get the total number of systems:

ˆ
ρ (q, p, t)

∏
i

dqidpi = N
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Let us consider a tiny region of phase space, and at some time there is n systems in this region.
The region evolves in time according to Liouville’s theorem, maintaining constant volume. We also
claim that n is conserved, because for a system to leave, its trajectory would cross the trajectory of
a boundary point for the region, which is disallowed. Thus, as time evolves, dn

dt = 0. If we consider
an infinitesimally small region,

d

dt
[ρ (q, p, t) ∆V ] = 0

We know that d
dt∆V = 0, by Liouville’s theorem (2.2), and thus

d

dt
(ρ (q, p, t)) = 0

That is, the density of systems in a region of phase space remains constant as we evolve in time.

We can also write out the time derivative:

dρ

dt
=

∑
i

∂ρ

∂pi

dpi

dt
+

∑
i

∂ρ

∂qi

dqi

dt
+ ∂ρ

∂t

Applying Hamilton’s equations to the time derivatives of pi and qi, and setting this to zero:Å
∂ρ

∂t

ã
pi,qi

=
∑

i

Å
∂ρ

∂pi

∂H
∂qi

− ∂ρ

∂qi

∂H
∂pi

ã
(7)

This is Liouville’s equation. This allows us to look at some static region of phase space, and
determine the flux of the number of systems in the region over time. The previous equation had
us tracking the evolution of a region, and we found that the number of systems inside the region
was constant, while this equation keeps the region fixed and tracks the evolution of the number of
systems entering and leaving the system.

2.6.7 Poincaré Recurrence Theorem

Poincaré’s recurrence theorem applies to systems in which the phase space is bounded (it has finite
volume). For example, if we have a bound on the total energy, then we cannot move arbitrarily far
from the starting point in phase space.

Theorem 2.3. Poincaré Recurrence Theorem. Consider an initial point P in phase space.
Then for any neighborhood D0 of P , there exists a point P ′ ∈ D0 which will return to D0 in finite
time.

In theory, if we lived in a closed universe governed by classical mechanics, this theorem would imply
that at some point you would be taking this course again. Obviously, our universe isn’t governed by
classical mechanics, and it is not clear that it is a closed system so this is (hopefully) not true.

Proof. We have some region D0, which after time T , becomes the region D1. By Liouville’s theorem
(2.2), the volumes of these two regions must be equivalent. Let Dk be the region after time kT ,
where k ∈ Z. There must exist k, k′ ∈ Z such that some regions of Dk and Dk′ overlap,

Dk ∩Dk′ ̸= ∅
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This is because our phase space is bounded, and so at some point the regions must start to overlap,
it can only fill up the space for some finite number of times, eventually we must have some overlap
with the region for some previous time. This is why the condition of the phase space being bounded
is required, this is not true for an unbounded phase space. In the unbounded case:

k=∞⋃
k=0

Dk = ∞

Note that we have not proved the theorem already, we need to show that for any k, there is some k′

for which there is overlap.

Since the evolution of regions in phase space is fixed, if regions Dk and Dk′ have some overlap,
that set of overlapping points will continue to overlap throughout time, for Dk+1 and Dk′+1, etc.
However, not only is the motion forwards in time fixed, but the motion backwards in time is also
fixed. This means that they also have an overlapping region for Dk−1 and Dk′−1, and for all Dk−a

and Dk′−a, where a ∈ Z. This means that at some point we can have Dk−a = D0, which must
overlap with Dk′−k:

D0 ∩Dk′−k ̸= ∅

Again, this results from the fact that the mapping Dk → Dk+1 is invertible, we can track backwards
as well as forwards in time.

2.6.8 Poisson Brackets

Let f (q,p) and g (q,p) be two functions in phase space. The Poisson bracket is defined as

{f, g} =
∑

i

Å
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

ã
Let us consider the properties of Poisson brackets. The first is that the exchange of arguments picks
up a negative:

{f, g} = −{g, f}

We also have a linearity property:

{αf + βg, h} = α{f, h} + β{g, h}

Where α and β are constants.

We also have a relation that is reminiscent of commutator properties from QM:

{fg, h} = f{g, h} + {f, h}g
{h, fg} = f{h, g} + {h, f}g

We also have what is known as the Jacobi identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0
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All of these follow from the definition of the Poisson bracket. Additionally, all of the previous
identities are also true of matrix commutators,

î
f̂ , ĝ
ó
.

The close relationship to QM is further evidenced by Poisson bracket relations that are similar to
the canonical commutation relations:

{qi, qj} = 0
{pi, pj} = 0
{qi, pj} = δij

For any function f (q, p, t), we have that

df

dt
= {f,H} + ∂f

∂t

This is essentially how operators evolve in the Heisenberg picture.

Proof. The proof of this relation is simple, we can write the total time derivative of f :

df

dt
=

∑
i

Å
∂f

∂qi
q̇i + ∂f

∂pi
ṗi

ã
+ ∂f

∂t

Now applying Hamilton’s equations, we have that q̇i = ∂H
∂pi

, and ṗi = −∂H
∂qi

:

df

dt
=

∑
i

Å
∂f

∂qi

∂H
∂pi

− ∂g

∂pi

∂H
∂qi

ã
+ ∂f

∂t

= {f,H} + ∂f

∂t

From this, any function I (p, q) that does not depend explicitly on time, and “Poisson commutes”
with the Hamiltonian:

{I,H} = 0

must necessarily be a constant of the motion, since dI
dt = {I,H}.

As an example, consider the case where qi is a cyclic coordinate. In this case, the Lagrangian only
explicitly depends on the derivative of qi, not on qi itself. In this case, H will not add explicit
dependence on qi, which we argued earlier. In this case,

ṗi = {pi,H}

=
∑

j

Å
∂pi

∂qj

∂H
∂pj

− ∂H
∂qj

∂pi

∂pj

ã
We see that ∂pi

∂qj
= 0, and ∂pi

∂pj
= δij , so the whole thing becomes:

ṗi = −∂H
∂qi
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Which, since qi is cyclic, must be zero. Thus ṗi = 0 for a cyclic coordinate, and pi is constant. This
matches what we expect, the conjugate momentum of a cyclic coordinate is 0.

If I and J are constants of the motion, and therefore {I,H} = {J,H} = 0, their Poisson commutator
{I, J} must also be a constant of the motion:

{{I, J},H} = 0

This follows from the Jacobi identity:

{{I, J},H} + {{J,H}, I} + {{H, I}, J} = 0

Since the second and third terms must be zero, the first term must be zero.

Let’s do an example. Consider L = r × p. In components:

L1 = x2p3 − x3p2

L2 = x3p1 − x1p3

L3 = x1p2 − x2p1

Now let us consider the Poisson bracket {L1, L2}

{L1, L2} = {x2p3 − x3p2, x3p1 − x1p3}
= {x2p3, x3p1} + {x3p2, x1p3}
= x2{p3, x3}p1 + x1{x3, p3}p2

= −x2p1 + x1p2

= x1p2 − x2p1

= L3

We see that we recover the same commutator as in QM, the Poisson commutator of L1 and L2 gives
us L3.

Similarly, one can show that {L2, Li} = 0, where L2 =
∑

i L
2
i . This once again mimics what we see

in quantum mechanics.

2.6.9 Canonical Transformations

In the Hamiltonian formalism, qi and pi are on equal footing, which allows for a much greater class
of coordinate transformations:

qi → Qi (q, p, t)
pi → Pi (q, p, t)

However, not all transformations of this form are allowed, we have the restriction that the new
coordinates should evolve in time as governed by Hamilton’s equations. This means that we
transform the Hamiltonian:

H (q, p, t) → K (Q,P, t)
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Such that

∂K
∂Ṗi

= Q̇i

∂K
∂Q̇i

= −Ṗi

Transformations that satisfy this condition are known as canonical transformations.

We will focus on restricted canonical transformations, which are those that are not time dependent:

qi → Q (q, p)
pi → P (q, p)

H (q, p) = K (Q,P )

What are the operations that we can actually do? We first write Hamilton’s equations in a symmetric
form. We define the vector z = (q1, q2, . . . , qn, p1, p2, . . . , pn). This is a 2n dimensional vector. We
also define a 2n× 2n matrix Ĵ , which we define as a block matrix

Ĵ =
ï

0n×n In×n

−In×n 0n×n

ò
This is the invariant metric for symplectic transformations, and it shows up a lot in physics. In this
notation, we can write Hamilton’s equations as:

ż = Ĵ
∂H
∂z

The derivative ∂H/∂z is the gradient in the space of z vectors. In component form, we recover the
correct equations:

żi =
∑

j

Ĵij
∂H
∂zj

Now let us make the coordinate transformation from q and p to Q and P . This means that

zi → wi (z)

Now let us figure out what the conditions are for this transformation from zi to wi. We start by
computing ẇi:

ẇi =
∑

j

∂wi

∂zj
żj

=
∑

j

∑
k

∂wi

∂zj
Ĵjk

∂H
∂zk
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Now we can write ∂H
∂zk

=
∑

l
∂H
∂wl

∂wl
∂zk

:

ẇi =
∑

j

∑
k

∑
l

∂wi

∂zj
Ĵjk

∂H
∂wl

∂wl

∂zk

=
∑
j,k,l

∂wi

∂zj
Ĵjk

∂wl

∂zk

∂H
∂wl

The thing to notice is that ∂wi
∂zj

are the elements of the Jacobian matrix4 J for the transformation
from z to w:

Jij = ∂wi

∂zj

From this, we can see that we have

ẇi =
∑
j,k,l

Jij ĴjkJlk
∂H
∂wl

From this, we note that we can write this as a vector equation:

ẇ =
Ä
JĴJT

ä ∂H
∂w

If the transformation is canonical, then we have that

J̇ = Ĵ
∂H
∂w

So we must have that

JĴJT = Ĵ

If this condition holds, the Jacobian is said to be symplectic. In terms of the coordinates, this means
that ∑

j,k

∂wi

∂zj
Ĵjk

∂wl

∂zk
= Ĵil

From this, we see some of the group structure of the transformations start to show, for example,
doing two canonical transformations in a row must be a canonical transformation.

Now let us show that this condition is equivalent to the requirement that the new coordinates Qi

and Pi satisfy the conditions:

{Qi, Qj} = 0
{Pi, Pj} = 0
{Qi, Pj} = δij

4Ĵ and J are different matrices!
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Proof. We can look at the Jacobian matrix schematically, as a block matrix:

J =
[

∂Qi
∂qj

∂Qi
∂pj

∂Pi
∂qj

∂Pi
∂pj

]

We can now look at JĴJT in terms of n× n block matrices:Ä
JĴJT

ä
il

[
∂Qi
∂qj

∂Qi
∂pj

∂Pi
∂qj

∂Pi
∂pj

] ï
0 δjk

−δjk 0

ò ñ∂Ql
∂qk

∂Pl
∂qk

∂Ql
∂pk

∂Pl
∂pk

ô
Now doing this matrix multiplication out, we are left withÄ

JĴJT
ä

il
=
ï
{Qi, Ql} {Qi, Pl}
{Pi, Ql} {Pi, Pl}

ò
Fro this to be canonical, we need this to be equal to Ĵil :ï

{Qi, Ql} {Qi, Pl}
{Pi, Ql} {Pi, Pl}

ò
=
ï

0 δil

−δil 0

ò
From this, we can read off the condition for the transformation to be canonical:

{Qi, Qj} = 0
{Pi, Pj} = 0
{Qi, Pj} = δij

Which is exactly what we expect.

Now let us pivot and consider the Poisson brackets once more.

Theorem 2.4. The Poisson bracket is invariant under canonical transformations. Under q → Q
and p → P , the Poisson bracket {f, g} remains the same:

{f, g} =
∑

i

Å
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

ã
=

∑
i

Å
∂f

∂Qi

∂g

∂Pi
− ∂g

∂qi

∂f

∂Pi

ã
Proof. We first note that we can rewrite the Poisson bracket:

{f, g} =
∑

i

Å
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

ã
=

∑
i,j

∂f

∂zi
Ĵij

∂g

∂zj
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Under a change of coordinates from z → w (z), then we can rewrite the derivatives:

∂f

∂zi
=

∑
k

∂f

∂wk

∂wk

∂zi︸︷︷︸
Jki

Where J is the Jacobian. We can then rewrite the Poisson bracket:

{f, g} =
∑

i

Å
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

ã
=

∑
i,j

∂f

∂zi
Ĵij

∂g

∂zj

=
∑

i,j,k,l

∂f

∂wk
JkiĴijJlj︸ ︷︷ ︸
(JĴJT )kl

∂g

∂wl

Now noting that by definition, a canonical transformation has JĴJT = Ĵ , we are left with

{f, g} =
∑
kl

Å
∂f

∂wk

ã
Ĵkl

∂g

∂wl

=
∑

i

Å
∂f

∂Qi

∂g

∂Pi
− ∂g

∂Qi

∂f

∂Pi

ã
Thus for any canonical transformation, the Poisson brackets remain invariant.

2.6.10 Action-Angle Variables

Consider a Hamiltonian H (q, p), with no explicit time dependence, restricted to a single degree of
freedom. We now make the assumption that q is bounded, q ∈ [q1, q2]. Because of these assumptions,
by the Poincaré recurrence theorem, the system will undergo periodic motion. However, we can
make a canonical transformation from (p, q) to (I, θ), such that θ is cyclic, H has no explicit θ
dependence, H (I). For this 1D system, it is always possible to make such a transformation.

Hamilton’s equations then tell us that

∂H
∂θ

= İ

= 0
∂H
∂I

= θ̇

The first equation tells us that I is a constant, and since θ̇ is a function of only I, θ̇ must also be
constant. By convention, we normalize I and θ, such that θ̇ = ω, which is the angular frequency
of oscillations. The momentum I is known as the “action variable”, and the cyclic coordinate θ is
known as the “angle variable”.

Let us determine the action-angle variables for a 1D system where:

H = p2

2m + V (q)
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Where we also bound our system so that q is between q1 and q2.

Since I is a constant of the motion, it must be some function of the total energy of the system.
This is because H must be a function of only I, and H is the total energy in the system. Another
reasoning is that we can’t introduce another constant of the motion other than the energy, so I has
to be related to E in some way.

We can write out θ̇:

θ̇ = ∂H
∂I

= dH
dI

= dE

dI
= ω

Where we have used the fact that H is independent of θ, then that H = E, and then the definition
of θ̇ in terms of the angular frequency. We can’t just integrate this because ω may be a function of
I. Now we cheat a bit, and we claim the correct answer, and then we will verify it. We claim that
the correct choice of I is

I = 1
2π

˛
p dq

This integral is the area enclosed by the orbit in phase space, scaled by 2π. This is reminiscent of
the Bohr-Sommerfeld quantization from QM.

Now let us prove that this choice of I satisfies the action-angle conditions.

Proof. The orbit in phase space is some region that must have symmetry when reflected across the
q axis, but not necessarily across the p axis. The region is also bounded so that q ∈ [q1, q2]. The
area is a function of the energy in the system. The claim is that dE

dI = ω. We need to show that

d

dE

Å˛
p dq

ã
= 2π

ω

Recall that p =
√

2m (E − V (q)) for this system. As we change E, we need to see how the integral
change. There are two effects to changing E. The first is the integrand changes for all q, since p
depends on E :

p → p+
Å
∂p

∂E

ã
q

∆E

The second effect is that the endpoints q1 and q2 are altered, since the system can oscillate between
different points depending on what the energy is.

We have to account for both of these effects.

Its convenient to look at these separately. First, let us consider the change in the value of the
integrand.
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We have to compute the integral of the shifted part of p:
˛ Å

∂p

∂E

ã
q

dq =
…
m

2

˛
dq√

E − V (q)

Now we note that 1
2mq̇

2 + V (q) = E, since q̇ = ∂H
∂p = p

m . Using this, we can solve this for q̇, and
then separate the derivative and integrate both sides:

ˆ
dt =

ˆ
dq

…
m

2
1√

E − V (q)

We see that this is very similar to what we have for the integral that we are trying to compute.
This gets us that

˛ Å
∂p

∂E

ã
q

dq = T

Where T is the period of the orbit. By definition, T = 2π
ω . This is the outcome of the first effect,

and so we hope that the second effect vanishes.

By inspection, we know that the value of p is very small near the turning points of the system.
Thus, when we shift the turning point slightly, we have a negligible contribution to the integral. We
can show this (in a hand-wavy way). Setting V (qi + ∆qi) = E + ∆E, we have

V ′ (qi) ∆qi = ∆E

Then contributions to
¸
p dq from the region between qi and qi + ∆qi is given by

ˆ qi+∆qi

qi

dq
»

2m (E − V (q)) ≈

Ñ
2m (E − V (qi))︸ ︷︷ ︸

≈0

é1/2

∆qi︸︷︷︸
∆E

V ′(qi)

= 0

Where we note that the difference between the total energy and the potential near the turning
points is very close to zero. From this, we see that the second effect is negligible5, and thus

d

dE

˛
p dq =

˛
∂p

∂E
dq

= 2π
ω

As expected.

We have an expression for the action variable, but what about the angle variable? To obtain the
angle variable, we note that

t− t0 =
ˆ q(t)

q(t0)
dq

Å
∂p

∂E

ã
q

5This is hand-wavy, if we do it out precisely instead of zero, we get something of order (∆qi)2
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= d

dE

ˆ q(t)

q(t0)
p dq

We can then write θ (t):

θ (t) = θ (t0) + ωt

Setting θ (t0) = 0 by convention:

θ (t) = ωt

= dE

dI

d

dE

ˆ q(t)

q(t0)
p dq

= d

dI

ˆ q(t)

q(t0)
p dq

Now let us consider the flow in phase space. In the usual (p, q) coordinates, we have some closed
trajectory. In action-angle coordinates, the orbits are straight lines, with periodic boundary
conditions as θ wraps around from 2π to 0. Different values of I are different straight lines.

One thing to keep in mind is that we can determine the period of the orbit T from ω = dE
dI after

calculating I (E).

Let us do an example. Suppose we want to find the action-angle variables for simple harmonic
oscillator, and determine the period of oscillation. We have that

H = p2

2m + 1
2kq

2

= E

From this, we have that p = ±
»

2m
(
E − 1

2kx
2
)
. We can solve for I:

I = 1
2π

˛
p dx

= 1
2π

ñ
2
ˆ A

−A

 
2m
Å
E − 1

2kx
2
ã
dx

ô
Where x = ±A are the turning points, where E = 1

2kA
2. The factor of 2 is to account for the top

and bottom halves of the orbit, which are symmetrical. We can solve this integral:

I = 1
2π

ñ
2
ˆ A

−A

 
2m
Å
E − 1

2kx
2
ã
dx

ô
= 1

2π

ñ
2
√

2m
ˆ A

−A

…
1
2kA

2 − 1
2kx

2 dx

ô
= 1

2π

ñ
2
√

2m
ˆ π/2

−π/2

…
1
2kA

2 cos2 αA cosαdα
ô

= 1
2π

ñ
2
√
kmA2

ˆ π/2

−π/2
cos2 αdα

ô
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= 1
2π

ñ
2
√
kmA2

ˆ π/2

−π/2
dα

1
2 + 1

2 cos (2α)
ô

= 1
2π

(
2
√
kmA2π

2

)
=
…
m

k
E

Where we have used the substitution x = A sinα, and thus dx = A cosα. This tells us that
E =

»
k
mI, and thus ω = dE

dI =
»

k
m , which is what we expect.

Now we want to find the angle variable. We can do this by computing:

θ = d

dI

ˆ x(t)

x(t0)
p dx

=
ˆ x(t)

x(t0)

∂p

∂I
dq

Now noting that

p =
 

2m
Å
E − 1

2kx
2
ã

=
 

2m
Å
ωI − 1

2kx
2
ã

We can then solve for θ:

θ =
ˆ x(t)…m

2
ω dx»
ωI − 1

2x
2

=
…
m

2 ω
1»
1
2k

ˆ x(t) dx»
2ω
k I − x2

If we define 2ω
k I as a2, we are left with an integral of the form

ˆ
dx√
a2 − x2

Which can be solved the same way as our previous integral, we get an arcsine:

θ =
…
m

k
ω arcsin

(x
a

)
= arcsin

Ñ
xI»

2ω
k

é
= arcsin

Ñ
x»
2E
k

é
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2.6.11 Integrable Systems

We saw that for 1D systems with a time independent Hamiltonian, we could find action-angle
variables, in which one of the variables is cyclic, and the motion in phase space is trivial.

Suppose we now have a system with multiple degrees of freedom. Is it in general possible to do
this? We want to make some transformation such that

H (pi, qi) → H (Ii, θi)

Such that H (Ii, θi) = H (Ii), all the θ coordinates are cyclic.

The answer is that no, this is not possible in general. If such a transformation exists, the system is
considered to be integrable.

Unfortunately, integrable systems are very rare. Generally speaking, if a classical mechanics problem
is solved, it is integrable. In fact, since the harmonic oscillator is integrable, we can map any
integrable system to the harmonic oscillator.

We can also discuss Liouville’s theorem on integrable systems, which relates the number of constants
of the motion to the integrability of the system.

Theorem 2.5. Liouville’s Theorem on Integrable Systems. In an n-dimensional system, if
we can find n independent mutually commuting constants of motion, (I1, I2, . . . , In), the system is
integrable.

This tells us that every 1D system with a time independent Hamiltonian is integrable, since the
energy is a constant of the motion.

2.6.12 Adiabatic Invariants

Consider a 1D system with a time independent Hamiltonian of the form:

H = p2

2m + V (q)

Let us once again assume that the motion is bounded, q ∈ [q1, q2].

Let the potential depend on some parameter λ, so that V (q, λ).

We want to explore what happens as we vary λ very slowly (“adiabatically”) with time. We define
adiabatic variation to be when dλ

dt ≪ λ
T , where T is the period. The change in λ over the timescale

of 1 period of the system is negligible.

The first thing to notice is that E is no longer constant, V has λ dependence, which has explicit
time dependence. The change in energy over time is given by

dE

dt
=
Å
∂H
∂t

ã
p,q

=
Å
∂H
∂λ

ã
p,q

Å
dλ

dt

ã
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We have seen that E is not conserved, but there are specfic combinations of E and λ which remain
approximately constant as λ is slowly changed. These combinations are known as adiabatic
invariants.

For this system, we claim that the adiabatic invariant is

I = 1
2π

˛
p dq

As we shift λ, the area of the orbit in phase space remains constant. The orbits don’t strictly close
any more, but we can approximate them to be closed to very good approximation, since λ varies
very slowly. Now let us show this. In general, the orbit depends on E and λ.

We can consider the change in I:

∆I =
Å
∂I

∂E

ã
λ

∆E +
Å
∂I

∂λ

ã
E

∆λ

İ =
Å
∂I

∂E

ã
λ

dE

dt
+
Å
∂I

∂λ

ã
E

dλ

dt

Recall that dI
dE is related to T ,

(
∂I
∂E

)
λ

= 1
ω(λ) = T (λ)

2π . We also know that dE
dt can be written as

previously derived, in terms of the derivative of the Hamiltonian and dλ
dt . From this, we have that

İ = T (λ)
2π

ñÅ
∂H
∂λ

ã
p,q

dλ

dt

ô
+
Å
∂I

∂λ

ã
E

dλ

dt

Now looking at the second term, this is the rate of change of the area with respect to λ, with E
held constant. Å

∂I

∂λ

ã
E

= 1
2π

Å
∂

∂λ

˛
p dq

ã
E

= 1
2π

˛ Å
∂p

∂λ

ã
E,q

dq

Where we have moved the derivative inside the integral by neglecting the contribution of the
endpoints. Now we note that we know p in terms of E:

p =
»

2m (E − V (λ, q))

We know that

dE =
Å
∂H
∂q

ã
p,λ

dq +
Å
∂H
∂p

ã
q,λ

dp+
Å
∂H
∂λ

ã
p,q

dλ

For the case where dE = 0 and dq = 0 (since thats what we want in the derivative of p wrt λ), we
have that Å

∂H
∂p

ã
q,λ

Å
∂p

∂λ

ã
q,E

+
Å
∂H
∂λ

ã
p,q

= 0

Going back to
(

∂I
∂λ

)
, we can do a change of variables to a time integral:Å

∂I

∂λ

ã
E

= 1
2π

˛ Å
∂p

∂λ

ã
q,E

dq

dt
dt
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= − 1
2π

˛ Å
∂H
∂λ

ã
p,q

dt

= − 1
2π

ˆ T (λ)

0

Å
∂H
∂λ

ã
p,q

dt

Where we have used the fact that dq
dt =

Ä
∂H
∂p

ä
q,λ

, and we have used the relationship derived above
to replace the integrand with

(
∂H
∂λ

)
p,q

. Now putting the two terms together, we have that

İ = λ̇

2π

ñ
T (λ)

Å
∂H
∂λ

ã
p,q

−
ˆ T (λ)

0

Å
∂H
∂λ

ã
p,q

dt

ô
Now we note that if we could pull the integrand out of the integral, these two terms would exactly
cancel. Up to this point, we have not leveraged the fact that λ is slowly varying (other than assuming
that the orbit closes to good approximation). Now we argue that in the regime where λ is varying
adiabatically, these two terms approximately cancel.

Let us compute the change in I over one period:

∆I =
ˆ T (λ)

0
İ dt

=
ˆ T (λ)

0
dt

λ̇

2π

ñ
T (λ)

Å
∂H
∂λ

ã
p,q

−
ˆ T (λ)

0

Å
∂H
∂λ

ã
p,q

dt

ô
= T (λ)

2π

ñˆ T (λ)

0
dt
dλ

dt

Å
∂H
∂λ

ã
p,q

− 1
T (λ)

ˆ T (λ)

0
dt
dλ

dt

ˆ T (λ)

0
dt

Å
∂H
∂λ

ã
p,q

ô
= T (λ)

2π

ñˆ T (λ)

0
dt
dλ

dt

Å
∂H
∂λ

ã
p,q

− ∆λ
T (λ)

ˆ T (λ)

0

Å
∂H
∂λ

ã
p,q

dt

ô
= T (λ)

2π

ˆ T (λ)

0
dt

Å
∂H
∂λ

ã
p,q

Å
dλ

dt
− ∆λ
T (λ)

ã
We now argue that if we are changing λ slowly and smoothly, dλ

dt − ∆λ
T (λ) = 0 over the timescale of

one period. We can work through this by Taylor expanding:

∆λ = dλ

dt
∆t+ O

(
λ̈
)

If we look at the condition for adiabaticity, we have that

λ̇

λ
≪ 1

T

Because of this, the higher order terms in the Taylor expansion do not contribute, and thus dλ
dt = ∆λ

T (λ)
(since ∆T over one period is T ), and thus the integrand is zero. From this, we have shown that
I = 1

2π

¸
p dq is a constant of the motion, and is therefore an adiabatic invariant.
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3 Electrostatics
We begin our discussion of electrodynamics with electrostatics. The force between two charges
satisfies Coulomb’s Law:

F = qq1
4πε0

x − x1
|x − x1|3

Where F is the force on q from q1, and ε0 is the permittivity of free space. In order to mitigate
having to write this prefactor everywhere, we define k = 1

4πε0
, which is 9 × 109 Newton meters

squared per Coulomb squared.

3.1 Electric Field and Scalar Potential
We now introduce the electric field. Consider a system of n charges, q1, . . . , qn, located at
x1,x2, . . . ,xn. The force of these n charges on a charge q at location x is given by F = qE (x),
where

E (x) =
n∑
i

1
4πε0

qi
x − xi

|x − xi|3

Note that there is no force exerted on q by itself (there are no self forces). Suppose we have a
continuous charge distribution:

E (x) = 1
4πε0

ˆ
d3x′ ρ

(
x′) x − x′

|x − x′|3

Where ρ (x) is the density of charge at point x. For discrete charges, ρ (x) is a sum of delta
functions:

ρx =
∑

i

qiδ
3 (x − xi)

Now let us show that the electric field can be written as the gradient of a scalar potential:

E = −∇ϕ

Where we define the scalar potential as:

ϕ (x) = 1
4πε0

ˆ
d3x′ ρ (x′)

|x − x′|

Note that everything in the scalar potential depends on x′, except for the denominator, so what we
really care about is

∇ 1
|x − x′|

= ∇ 1»
(x− x′)2 + (y − y′)2 + (z − z′)2

Let us consider only the x component:

∂

∂x

1»
(x− x′)2 + (y − y′)2 + (z − z′)2

= −1
2

2 (x− x′)î
(x− x′)2 + (y − y′)2 + (z − z′)2

ó3/2
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= − x− x′

|x − x′|3

Repeating this for the other two coordinates, we see that:

∇ 1
|x − x′|

= − x − x′

|x − x′|3

Thus, we have that the gradient of the scalar potential is:

−∇ϕ (x) = − 1
4πε0

ˆ
d3x′ ρ

(
x′)∇

ï 1
|x − x′|

ò
= 1

4πε0

ˆ
d3x′ ρ

(
x′) x − x′

|x − x′|3

= E (x)

We see that we can indeed find E from a scalar-valued potential function. This means that we can
contain all of the information about the electric field from just this one function, which simplifies
things.

Since the curl of a gradient is always zero:

∇ × E = 0

By Stoke’s theorem, integrating the electric field around a closed path will give zero:
˛

E · dl = 0

From this, we find that the integral between two points is independent of the path (since we can
choose two paths between a and b, and the total integral must be equal to zero, so any two paths
must cancel out exactly):

ˆ x2

x1

E · dl is path independent

3.2 Charge in an Electric Field
Now let us consider the energy of a charge in an electric field. Consider moving a charge q from x1
to x2 quasistatically, very slowly, so there is no change in kinetic energy. The work done to move
the charge is given by:

W =
ˆ x2

x1

dx · Fext

The external force is just strong enough to overcome the electric field, so we say that it is equal and
opposite to the force due to the electric field, Fext = q∇ϕ:

W =
ˆ x2

x1

dx · Fext

= q

ˆ x2

x1

dϕ (x)
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= q [ϕ (x2) − ϕ (x1)]

Where we have used the fact that ∇ϕ · dx = dϕ, which can be shown by expanding the gradient:

∇ϕ = ∂ϕ

∂x
x̂+ ∂ϕ

∂y
ŷ + ∂ϕ

∂z
ẑ

From this, we see that multiplying by the vector dx, we get dϕ (x).

If the electric field vanishes at infinity, we can set the potential at infinity to 0. If we do this, then
the potential energy of a charge at x is given by qϕ (x).

3.3 Poisson’s Equation
Consider the divergence of E:

∇ · E = 1
4πε0

ˆ
d3x′ρ

(
x′)∇ ·

Å
x − x′

|x − x′|3

ã
There is a useful identity that we can apply here:

∇ · (ψA) = ∇ψ · A + ψ∇ · A

We can apply this identity, with ψ = 1
|x−x′|3 , and A = x − x′:

∇ · E = 1
4πε0

ˆ
d3x′ ρ

(
x′) ï 1

|x − x′|3
∇ ·

(
x − x′) +

(
x − x′) · ∇

Å 1
|x − x′|3

ãò
= 1

4πε0

ˆ
d3x′ρ

(
x′) ï 3

|x − x′|3
+
(
x − x′) ·

Å
− 3

|x − x′|2
∇
Å 1

|x − x′|

ããò
= 1

4πε0

ˆ
d3x′ρ

(
x′) ï 3

|x − x′|3
+
(
x − x′) ·

Å 3
|x − x′|2

x − x′

|x − x′|3

ãò
= 1

4πε0

ˆ
d3x′ρ

(
x′)Å 3

|x − x′|3
− 3

|x − x′|3

ã
= 0

Where we have used the fact that ∇ · (x − x′) = ∇ · x = 3, and the fact that ∇
(
ψ3) = 3ψ2∇ψ,

and we choose ψ = 1/(x − x′).

However, we know that the divergence of E is not zero, so there is a loophole that we have to
fix. What we have neglected is the singular point x = x′. Consider the integral (note that we are
integrating wrt x, and not x′)

I =
ˆ

V
d3x∇ ·

Å
∇ 1

|x| − x′

ã
Where V is a spherical volume centered around x′. If x is a point on the surface of the sphere, then
x − x′ is the unit vector n̂ pointing from the center of the sphere to the point on the sphere, times
the radius R of the sphere, x − x′ = Rn̂.

Let us apply the divergence theorem to this volume integral, converting it to a surface integral:
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I =
ˆ

V
d3x∇ ·

Å
∇ 1

|x| − x′

ã
=
ˆ

S
ds n̂ · ∇

Å 1
|x − x′|

ã
Where S is the spherical shell centered at x′, and n̂ is a unit vector pointing in the direction of
the element ds. We now note that n̂ = x−x′

R , and the radius must be |x − x′|. If we now take the
gradient:

I =
ˆ

S
ds n̂ · ∇

Å 1
|x − x′|

ã
= −

ˆ
S
ds n̂ · x − x′

|x − x′|3

= −
ˆ

S
ds

1
|x − x′|2

= −
ˆ

S
ds

1
R2

= −4π

Since the result is independent of R, we must have

∇2
Å 1

|x − x′|

ã
= −4πδ3 (x − x′)

This explains why we got 0 in our first derivation, since this is zero at all points other than x = x′,
and we were not careful about that singular point.

If we now look at ∇ · E:

∇ · E = 1
4πε0

ˆ
d3x′ ρ

(
x′) 4πδ3 (x − x′)

= ρ (x)
ε0

Which is the differential form of Gauss’s law, as we expect:

∇ · E = ρ

ε0

We also know that E = −∇ϕ, so we have that

∇2ϕ = − ρ

ε0

For the special case of ρ = 0, we recover Laplace’s equation:

∇2ϕ = 0
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3.4 Gauss’s Law
Let us now derive the integral form of Gauss’s Law. We begin with the differential form, which we
derived above:

∇ · E = ρ

ε0

Integrating this over some arbitrary closed volume:ˆ
V
d3x ∇ · E = 1

ε0

ˆ
V
d3x ρ (x)︸ ︷︷ ︸

Qenc

The right hand integral is the total charge enclosed in V . The right side can be written as a surface
integral using the divergence theorem:ˆ

d3x ∇ · E =
ˆ

S
ds (n̂ · E)

Where n̂ is the outward normal vector to the surface element ds. This integral is the total flux of E
through the closed surface S, and we have the relation:ˆ

S
dsE · n̂ = Qenc

ε0
(8)

This is the integral form of Gauss’s Law, it relates the flux of the electric field through a surface to
the total charge enclosed by the surface.

Let us do a couple of examples. Suppose we want to determine the electric field of a point charge q
using Gauss’s Law.

We consider a sphere around the point charge, of radius R. The charge enclosed is q.˛
E · dn̂ = q

ε0

The magnitude of the electric field will be the same for all points on the surface of our sphere, so
E = Er̂. The unit vector to any point on the sphere is also in the radial direction, n̂ = r̂. Applying
this to the left hand side: ˛

E · dn̂ = q

ε0˛
Er̂ · dr̂ = q

ε0

4πR2E = q

ε0

E = 1
4πε0

q

r2

From this, we obtain the expected:

E = 1
4πε0

q

r2 r̂
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Now let us consider a slightly more complicated example. Consider the electric field due to the
surface charge of a conductor. The first thing to note is that the electric field inside of a conductor
is zero, since the charges inside of a conductor are free to move, and thus move to make the electric
field zero. Essentially, we have no electric field or free charges inside a conductor. This implies that
the charge density inside a conductor must be 0, since ∇ · E = ρ. This restricts any free charges to
the surface.

We define the surface charge density σ (x) as the charge on an area element, over the area of the
element, where the area is infinitesimal.

We have now set up the problem, let us now find the electric field at the surface due to this surface
charge density. To do this, we consider a “pillbox” of area ∆S and infinitesimal height at the surface.

We assume that the area of the surface that we contain is small enough that the surface charge
density cannot vary that much:

Qenc = σ∆S

Writing down Gauss’s Law:
˛

E · n̂ ds = Q

ε0

= 1
ε0

(σ∆S)

Note that the height of the pillbox is infinitesimal even compared to the area of the pillbox, which
is also infinitesimal. The bottom surface of the pillbox does not contribute to the flux, because it is
inside the conductor, and E = 0. The sides don’t contribute because the height of the pillboxe is
negligible, and thus only the top contributes to the surface integral. Thus we are left with

E · n̂∆S = 1
ε0
σ∆S

The normal component of E is given by

E · n̂ = σ

ε0

What about the tangential component of E?

Consider an infinitesimal rectangular loop. Recall that the integral of the electric field along the
entire loop must be zero,

¸
E · dl = 0. We can neglect the sides of the loop, since we make them

infinitesimally small compared to the width of the loop. The contribution from the bottom vanishes
because it is inside the conductor, where E = 0. Thus we have that the overall integral, which is
equal to just the contribution from the part outside of the conductor, must be zero, and thus the
tangential electric field outside of the conductor must also be zero. The tangential field is the field
parallel to the surface of the conductor.

Thus we have shown that near the surface of a conductor, the electric field is solely perpendicular
to the surface, and is given by

E · n̂ = σ

ε0
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3.5 Uniqueness of Solutions of Poisson’s Equations
We often have to solve Poisson’s equation in a region with boundaries. We now want to show that
if Dirichlet or Nuemann boundary conditions are imposed at the boundary, the solution that we
obtain is unique.

We go about proving this by contradiction. Poisson’s equation is of the form:

∇2ϕ = − ρ

ε0

Suppose that this has two solutions, ϕ1 and ϕ2 such that ϕ1 ̸= ϕ2. We also suppose that these two
solutions both satisfy the boundary conditions of the system:

∇2ϕ1 = − ρ

ε0

∇2ϕ2 = − ρ

ε0

Now consider the function U = ϕ1 − ϕ2. This necessarily satisfies Laplace’s equation:

∇2U = 0

We can now consider the quantity: ˆ
V
d3xU∇2U

Since ∇2U = 0, this quantity must also be zero. We can rewrite the integrand:ˆ
V
d3xU∇2U =

ˆ
V
d3x

[
∇ · (U∇U) − |∇U |2

]

Now setting this equal to zero and splitting the integral into two parts:ˆ
V
d3x ∇ · (U∇U) =

ˆ
V
d3x |∇U |2

Now applying the divergence theorem to the left side:ˆ
S
ds n̂ · (U∇U) =

ˆ
dsU (n̂ · ∇U)

For Dirichlet boundary conditions, the value of ϕ is specified at the boundary S. If we impose these
conditions, then U must vanish at the boundary, soˆ

V
d3x |∇U |2 = 0

This implies that U is a constant throughout the volume V , but since U vanishes at the boundary,
this means that U is zero everywhere, which means that ϕ1 = ϕ2, giving us a contradiction.

In the case of Neumann boundary conditions, the value of ∇ϕ · n̂ is specified on the boundary. In
this case, n̂ · ∇U = 0 on the boundary, and by the same argument as in the previous case, U must
be zero everywhere, once again providing us a contradiction. Thus we have that the scalar potential
ϕ is unique up to an additive constant.
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3.6 Electrostatic Energy
Consider a charge q, located at x1. The potential at a point x due to x1 is given by

ϕ = 1
4πε0

q1
|x − x1|

Now suppose we move another charge from ∞ to x2. The potential energy is

W = q2ϕ (x1)

= 1
4πε0

q1q2
|x2 − x1|

If we now bring in an additional charge from infinity to x3:

W = 1
4πε0

ï
q1q2

|x1 − x2|
+ q2q3

|x2 − x3|
+ q3q1

|x3 − x1|

ò
This immediately generalizes to an arbitrary number of charges:

W =
n∑

i=1

∑
j<i

1
4πε0

qiqj

|xi − xj |

Which we can rewrite as

W = 1
2

∑
i ̸=j

qiqj

|xj − xi|
1

4πε0

The condition i ̸= j removes the self-energy terms.

For a continuous charge distribution ρ (x) :

W = 1
2

ˆ
d3x

ˆ
d3x′ ρ (x) ρ (x′)

|x − x′|
1

4πε0

= 1
2

ˆ
d3x ρ (x)ϕ (x)

Where we have substituted in the definition of the potential. If we take this expression and insert a
rewritten form of Poisson’s equation:

W = −1
2ε0

ˆ
d3xϕ (x) ∇2ϕ (x)

If we integrate this by parts, while assuming that the field vanishes at infinity:

W = 1
2ε0

ˆ
d3x |∇ϕ|2

= 1
2ε0

ˆ
d3x |E|2

Which gives us the energy density of an electrostatic field:

w = 1
2ε0|E|2

Note that the energy density is positive definite, while the expression for discrete charges is not,
because the energy density includes the self-energy.
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3.7 Force on a Conducting Sphere
We can obtain the force on a conducting surface in two differeny ways. The first is to look at the
energy change from a virtual displacement, and the second is directly from the electric field.

Let us first consider the energy change from a virtual displacement. The energy density is w =
1
2ε0|E|2. At the surface of the conductor, E = σ

ε0
, and is directed normal to the surface. Consider a

smalll displacement ∆x of an element ∆A of the conducting surface, in a direction normal to the
surface at that point. The change in energy will be given by:

∆w = −ε0
2 |E|2∆A∆x

= − 1
2ε0

σ2∆A∆x

The force is given by F = −∂w
∂x , and therefore we have that

F = σ2∆A 1
2ε0

and the force is directed outwards from the surface of the conductor. We can also compute the force
per unit area:

f = σ2

2ε0

The net force on the conductor can be obtained by integrating this over the surface.

The second method is to determine the force on the area element ∆A:

F = (σ∆a) Eext

Where the external electric field Eext is the electric field of the conductor after the contribution
from the element ∆A has been removed. This contribution is given by:

Eself = σ

2ε0

The total electric field is the sum of these two fields:

Etotal = Eself + Eext

From this, we find that Eext = σ
2ε0

. Thus we have that

f = F

∆A
= 1

2ε0
σ2

We see that we arrive at the same result as the energy argument. Always remember that when you
are calculating forces directly, we must remove the contribution from the self force, since nothing
can accelerate itself.
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3.8 Capacitance
Consider an isolate conductor carrying a charge Q. The capacitance C is defined as:

C = Q

ϕ

Where ϕ is the potential. If the capacitance is large, the conductor can store a lot of charge, even
though the potential only changes by a small amount. The value of C depends only on the geometry
of the conductor.

Capacitance for the case of two conductors carrying equal and opposite charges is defined as the
ratio of the charge on one conductor to the potential difference between them:

C = Q

∆ϕ

3.9 Boundary Value Problems
Consider a grounded conducting sphere of radius a (so the surface potential is zero). We have a
charge q outside the sphere at some point y relative to the center of the sphere. We want to find
the potential outside the sphere, at some arbitrary point x.

To do this, we use the method of images, we want to place a charge q′ somewhere and replace the
sphere, which will simplify the calculation. We have two constraints on where we can place the
charge. The first is that it lies along y, since that is the only axis that is important to the problem,
everything else is symmetric. The second constraint is that the image charge must be placed inside
the sphere.

In general, the potential ϕ (x) at x will be:

ϕ (x) = 1
4πε0

ï
q

|x − y|
+ q′

|x − y|

ò
= 1

4πε0

ï
q

|xn̂− yn̂′|
+ q′

|xn̂+ yn̂′|

ò
Where we have replaced the magnitude of vectors with their non-boldface forms, and n̂ is the unit
vector from the center of the sphere to x, and n̂′ is the unit vector from the center to the external
charge.

We now introduce the boundary condition constraint, ϕ (x = a) = 0, the potential at the surface of
the sphere must be zero:

ϕ (x = a) = 1
4πε0

ñ
q

a|n̂− y
a n̂

′|
+ q′

y′|n̂′ − a
y n̂|

ô
In order for this to be zero, we make the choice that q

a = − q′

y′ , and y
a = a

y′ . This is how we set our
choice for where the image charge is placed. This gives us the general solution:

ϕ (x) = 1
4πε0

[
q

|x − y|
− qa

y

1
|x − a2

y2 y|

]
From this, we could find the electric field, using E = −∇ϕ.

This is the simplest case of the method of images.
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3.10 Green’s Function Method
The Green’s function method allows us to more easily solve boundary value problems, as well as
expand the set of boundary values that we can deal with.

We begin with an ordinary differential equation:

y′′ + y = f (x)

We set our boundary conditions such that y = 0 at x = 0, and y = 0 at x = π
2 .

The strategy to solve this is to introduce a function g (x, x′), that satisfies a slightly different version
of this equation, where we introduce a new variable x′:

d2G

dx2 +G = δ
(
x− x′) G

(
x, x′) |x=0,π/2 = 0

We then use this function to solve for y (x):

y (x) =
ˆ π/2

0
G
(
x, x′) f (x′) dx′

We can check that this is valid:

y′′ + y =
ˆ π/2

0

ï
d2G

dx2 +G

ò
f
(
x′) dx′

=
ˆ π/2

0
δ
(
x− x′) f (x′) dx′

= f (x)

We can also see that inserting x = 0 or x = π
2 matches the boundary conditions.

Essentially, we determine the function G (x, x′) for all points x′, and then aggregating all of these
by integrating over x′ to obtain y (x), and scaling by the value of the Green’s function at each point.
This is essentially solving the ODE at every point, and then superimposing the different solutions
together.

Thus, in order to obtain y (x), we need to find G (x, x′). The claim is that finding G is easier than
solving the original ODE.

We begin with our differential equation:

d2G

dx2 +G = δ
(
x− x′)

We know that away from x′, this is a homogenous equation:

d2G

dx2 +G = 0

Which has the harmonic oscillator solution, G = A sin (x) +B cos (x). Thus the only case that we
need to worry about is the case where x = x′. Since we have a discontinuity at x = x′, we treat the
Green’s function as a piecewise function:

G =
®
G< = A< sin x+B< cosx x < x′

G> = A> sin x+B> cosx x > x′



PHYS610 Lecture Notes Hersh Kumar
Page 103

We now apply the boundary condition that for x = 0, G<(0, x′) = 0, which gives us that B< = 0.
We apply the other boundary condition, at x = π

2 , we have G> (π/2, x′) = 0, so A> = 0.

Now we enforce continuity, so G< (x′, x′) = G> (x′, x′):

A< sin
(
x′) = B> cos

(
x′)

To get a second equation, we integrate our original equation across a band around x′:
ˆ x′+ε

x′−ε

ï
d2G

dx2 +G

ò
dx =

ˆ x′+ε

x′−ε
δ
(
x− x′) dx

dG

dx
|x=x′+ε − dG

dx
|x=x′−ε = 1

−B> sin
(
x′) −A< cos

(
x′) = 1

Where the integral of G vanishes over this small region because the contribution will be of order ε.

We now have two equations of the two constants, and thus we can determine them:

A< = − cos
(
x′) B> = − sin

(
x′)

This gives us the Green’s function:

G
(
x, x′) =

®
− sin x cosx′ x < x′

− cosx sin x′ x > x′

We can now compute y (x) :

y (x) =
ˆ π/2

0
dx′G

(
x, x′) f (x′)

=
ˆ x

0
dx′G>

(
x, x′) f (x′) +

ˆ π/2

x
dx′G<

(
x, x′) f (x′)

Which is the solution to our differential equation.

Now let us apply this method to electrostatics problems.

Consider a point charge q. We claim that the potential from this point charge can be interpreted as
the Green’s function of ∇2. We can see this a little more clearly by looking at Poisson’s equation:

∇2ϕ = − ρ

ε0

= − q

ε0
δ3 (x − x′)

The potential from a point charge is given by:

ϕ (x) = 1
4πε0

1
|x − x′|



PHYS610 Lecture Notes Hersh Kumar
Page 104

We want our Green’s function to satisfy:

∇2G = −4πδ3 (x − x′)
Where the −4π is convention. If we take this convention, we have that

G
(
x,x′) = 4πε0

q
ϕ (x)

= 1
|x − x′|

Now let us consider a general potential, generated by some general charge distribution. We can
see that we can use the Green’s function to generate this out of a superposition of point charge
potentials:

ϕ (x) = 1
4π

ˆ
d3x′G

(
x,x′) ρ (x′)

ε0

= 1
4πε0

ˆ
d3x′ ρ (x)

|x − x′|

Which produces the standard result.

To recap, in the case of the ODE, we solved y′′ + y = f (x), and in the case of the Poisson equation,
we solved ∇2ϕ = −ρ(x)

ve0
. We then wrote these in terms of a Green’s function:

G′′ +G = δ
(
x− x′) ∇2G = −4πδ3 (x − x′)

We then solved for the Green’s functions, which was piecewise in the case of the ODE, and was
1/|x − x′| in the electrostatics case. We then used the Green’s function to solve for the solution to
the differential equation:

y =
ˆ
dx′ f

(
x′)G (

x, x′) 1
4π

ˆ
d3x′G

(
x,x′) ρ (x′)

ε0

Recall the case we solved using the method of images, where we have a point charge outside of a
grounded conducting sphere:

ϕ (x) = 1
4πε0

 q

|x − x′|
− aq

|x′|
1∣∣∣x − a2

|x′|2 x′
∣∣∣


We know that this satisfies the Poisson equation:

∇2ϕ = − q

ε0
δ3 (x − x′)

With ϕ (|x| = a) = 0.

We choose q = 4πε0 to get the Green’s function:

G
(
x,x′) =

 1
|x − x′|

− a

|x′|
1∣∣∣x − a2

|x′|2 x′
∣∣∣
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Which we can now apply to a generic charge distribution outside the sphere:

ϕ (x) = 1
4πε0

ˆ
d3xG

(
x,x′) ρ (x′)

Essentially, we are able to solve a particular case using a point charge, and then apply it to a general
charge distribution in the same situation.

Theorem 3.1. Green’s Theorem For two scalar functions ψ and ϕ:
ˆ

V

(
ϕ∇2ψ − ψ∇2ϕ

)
d3x =

˛
S

[ϕ (∇ψ · n̂) − ψ (∇ϕ · n̂)] ds

Proof. We can compute the two terms in the left integral:

ϕ∇2ψ = ∇ · (ϕ∇ψ) − ∇ϕ · ∇ψ

ψ∇2ϕ = ∇ · (ψ∇ϕ) − ∇ψ · ∇ϕ

We can now subtract these two terms:

ϕ∇2ψ − ψ∇2ϕ = ∇ · (ϕ∇ψ − ψ∇ϕ)

We can now integrate this over the volume, and then apply the divergence theorem, and we achieve
the desired result.

How do we use this theorem? We choose ϕ to be the potential that we are looking for, and we
choose ψ to be the Green’s function:

ψ = G
(
x, x′)

Such that

∇2G = −4πδ3 (x − x′)
Where the boundary conditions will be specified later. Using Green’s theorem:
ˆ

V

[
ϕ
(
x′)∇′2ψ

(
x′) − ψ

(
x′)∇′2ϕ

(
x′)] d3x′ =

ˆ
S

[
ϕ (x)

(
∇′ψ

(
x′) · n̂′) − ψ

(
x′) (∇′ϕ

(
x′) · n̂′)] ds′

From this, we have that the potential is given by

ϕ (x) = 1
4πε0

ˆ
V
ρ
(
x′)G (

x′,x
)
d3x′ + 1

4π

ˆ
S

[
G
(
x′,x

) (
∇ϕ

(
x′) · n̂′) − ϕ

(
x′) (∇G

(
x′,x

)
· n̂′)] ds′

This is our key result.

We can now consider the case with Dirichlet boundary conditions, GD = 0 for x′ ∈ S, so the volume
integral vanishes.
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In the case of Neumann boundary conditions, we could guess that ∇′GN (x,x′) · n̂ = 0 for x′ ∈ S,
but this gives us an inconsistent solution. Instead, we choose

∇′2GN

(
x,x′) · n̂′ = −4π

s

Which gives us

ϕ
(
x′) = ⟨ϕ⟩S + 1

4πε0

ˆ
V
ρ
(
x′)GN

(
x,x′) d3x′ + 1

4π

˛
S
GN

(
x′,x

) (
∇′ϕ

(
x′) · n̂′) ds′

Where ⟨ϕ⟩S denotes the average of the value of ϕ on the surface S. If one boundary surface is at ∞,
then usually ⟨ϕ⟩S = 0, and that term vanishes.

It can be shown that in general, G (x′,x) = G (x,x′), which is a good way of checking whether the
Green’s function is correct.

Let us do an example. Consider a grounded, conducting sphere, of radius a, with a thin insulating
band around its center (at z = 0). The upper hemisphere is kept at a potential +V , and the lower
hemisphere is kept at potential −V . We want to find the potential outside of the sphere.

We are working with Dirichlet boundary conditions, so we know what our potential will look like:

ϕ (x) = 1
4πε0

ˆ
V
ρ
(
x′)GD

(
x,x′) d3x′ − 1

4π

ˆ
ϕ
(
x′) (∇′GD

(
x,x′) · n̂′) ds′

Since the sphere is conducting, the charge density is zero, so the first term vanishes. We also replace
the unit vector n̂′ with the radial component, −r̂′ (note that this points inwards).

We know the Green’s function, which is the same as the usual conducting sphere, except we rewrite
it in spherical coordinates:

GD = 1
|x − x′|

− a

r′
∣∣∣x − a2

r′2 x′
∣∣∣

We now put these together to solve for the potential. In spherical coordinates:

|x − x′| =
√
r2 + r′2 − 2rr′ cos γ

Where γ is the angle between the two points, and cos γ = r̂ · r̂′. We can also use the definition of
the radial unit vector:

cos γ = cos θ cos θ′ + sin θ sin θ′ cos
(
ϕ− ϕ′)

We can also compute the derivative of the Green’s function with respect to r′:

dGD

dr′ = −r′ + r cos γ
(r2 + r′2 − 2rr′ cos γ)3/2 +

r2r′

a2 − r cos γÄ
r2r′2

a2 + a2 − 2rr′ cos γ
ä3/2

Plugging these all in:

ϕ (x) = 1
4π

˛
S
ϕ
(
a, θ′, ϕ′) a2 (r2 − a2)

(r2 + a2 − 2ar cos γ)3/2dΩ′
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=
V a2 (r2 − a2)

4πa

ˆ 2π

0
dϕ′
ˆ 1

0
d cos θ′ 1

(a2 + r2 − 2ar cos γ)3/2

−
V a2 (r2 − a2)

4πa

ˆ 2π

0
dϕ′
ˆ 0

−1
d cos θ′ 1

(a2 − r2 − 2ar cos γ)3/2

In the case where r ≫ a, we have that

ϕ (x) = V ar2

4π
3a
r4 (2π) cos θ

= 3
2

(a
r

)2
V cos θ

Which is just the dipole, which we expect from the long distance limit.

3.11 Orthogonal Basis Functions
When the geometry of a problem is simple, we can use the method of images to obtain the Green’s
function. In complex geometries, this is often challenging. For example, consider a configuration
with two conductors, each of which is an infinite plane. This would require an infinite number
of image charges, which would be very tricky. Instead, we would like an alternative method for
problems like this, which is the method of orthogonal basis functions. We expand the solution to
Lapace’s or Poisson’s equations in terms of basis functions that are dependent on the geometry of
the problem. There are 3 commonly used coordinate systems, Cartesian, cylindrical, and spherical.
We will see how to set up the orthogonal basis functions in all of these coordinate systems.

3.11.1 Cartesian Coordinates

Consider a box whose sides and bottom face have potential 0. We have that the bottom of the
box lies in the xy plane, and the vertical direction is z. The potential at the top of the box is
given by Φ = V (x, y). The corner opposite the origin is at (a, b, c), giving the box dimensions
a× b× c. We want to solve for the potential anywhere inside the box. We have to solve Laplace’s
equation in Cartesian coordinates, subject to the boundary conditions that we specified. In Cartesian
coordinates, Laplace’s equation is given by

∂2Φ
∂x2 + ∂2Φ

∂y2 + ∂2Φ
∂z2 = 0

We will solve this with separation of variables, we will look for a solution of the form:

ϕ̂ (x, y, z) = X (x)Y (y)Z (z)

We substitute this into our equation, and then divide by ϕ̂, giving us:

1
X

d2X

dx2 + 1
Y

d2Y

dy2 + 1
Z

d2Z

dz2 = 0

Where the derivatives are now total derivatives. We can rewrite this:

1
X

d2X

dx2 + 1
Y

d2Y

dy2 = − 1
Z

d2Z

dz2
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We see that the left side only depends on x and y, and the right side only depends on z.

Thus we can set the two of these sides to the same constant, which we choose to be −γ2. The choice
of the sign comes from experience (or a guess).

We now have two differential equations:

1
X

d2X

dx2 + 1
Y

d2Y

dy2 = −γ2

1
Z

d2Z

dz2 = γ2

We can again separate variables for the x and y equation:

1
X

d2X

dx2 = −γ2 − 1
Y

d2Y

dy2

This separates into two equations:

1
X

d2X

dx2 = −α2

γ2 + 1
Y

d2Y

dy2 = α2

Defining β2 = γ2 − α2, we have a total of 3 equations:

1
X

d2X

dx2 = −α2

1
Y

d2Y

dy2 = −β2

1
Z

d2Z

dz2 = γ2

These equations are simple to solve, the x and y equations are just harmonic oscillator equations,
so we get sines and cosines, and the z equation gives us hyperbolic sines and cosines.

We have that X (x = 0, x = a) = 0, Y (y = 0, y = b) = 0, and Z (z = 0) = 0. Because of these, we
have the following solutions:

X (x) = sin
(nπx

a

)
n ∈ Z

Y (y) = sin
(mπy

b

)
m ∈ Z

Z (z) = sinh (γnmz)

Where γnm = π
»(

n
a

)2 +
(

m
b

)2.

In order to satisfy the boundary condition at the top of the box, we look for a solution that is a
linear combination of the solutions that we found:

Φ (x, y, z) =
∑
n,m

Anm sin
(nπx

a

)
sin

(mπy
b

)
sinh (γnmz)
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The rest of the problem is figuring out what the Anm coefficients are.

We first apply the boundary condition Φ (x, y, c) = V (x, y):∑
n,m

Anm sin
(nπx

a

)
sin

(mπy
b

)
sinh (γnmc) = V (x, y)

This is a double Fourier series for V (x, y), we want to find the coefficients of V (x, y), and then
match them to Anm.

We use the orthogonality of the Fourier basis functions to determine the coefficients:

∑
n,m

Anmδnn′δm′m sinh (γnmc) =
ˆ a

0
dx

2
a

sin
Å
n′πx

a

ãˆ b

0
dy

2
b

sin
Å
m′πy

b

ã
V (x, y)

Anm = 4
ab

1
sinh (γnmc)

ˆ a

0
dx

ˆ b

0
sin

(nπx
a

)
sin

(mπy
b

)
V (x, y)

This is the furthest we can get without knowing V (x, y).

Now let us consider a slightly harder problem.

Consider the same box, with the same coordinate system. We now impose the condition that Φ = 0
on all sides of the box, with the catch that we have a point charge Q in the box, at some point
(x0, y0, z0).

We want to solve the equation:

∇2Φ = −Q

ε0
δ (x− x0) δ (y − y0) δ (z − z0)

Away from (x0, y0, z0), we have Laplace’s equation:

∇2Φ = 0

We now write solutions for z > z0, and for z < z0. We are allowed to do this, as long as we match
the boundary cases. This is useful because we can reuse the solutions from the previous problem.
We can write out the two cases:

Φ (x, y, z < z0) =
∑
n,m

A<
nm sin

(nπx
a

)
sin

(mπy
b

)
sinh (γnmz)

Φ (x, y, z > z0) =
∑
n,m

A>
nm sin

(nπx
a

)
sin

(mπy
b

)
sinh (γnm (c− z))

We determine the coefficients by matching at z = z0.

We first enforce that the potential is continuous at the boundary z = z0:

A<
nm sinh (γnmz0) = A>

nm sinh (γnm (c− z0))

The second boundary condition is determined by integrating the Poisson equation over an infinitesimal
volume that includes the point (x0, y0, z0). We choose the infinitesimal volume to be in the shape of
a parallelopiped with sides ∆x, ∆y, and ∆z, with ∆z ≪ ∆x,∆y. Poisson’s equation integrated
over the parallelopiped then becomes: ˆ

V ′
∇2Φ d3x = −Q

ε0
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We can now apply Gauss’s law to the parallelopiped:ˆ
V ′

∇2Φ d3x =
ˆ

S′
ds (∇Φ · n̂)

=
ˆ
dx dy

ï
∂Φ
∂z

∣∣
z0+ε

−∂Φ
∂z

∣∣
z0−ε

ò
= −Q

ε0

If we move the parallelopiped so that it does not contain the point charge:ˆ
V ′

∇2Φ d3x =
ˆ

S′
ds (∇Φ · n̂)

=
ˆ
dx dy

∂Φ
∂z

∣∣
z0+ε

−∂Φ
∂z

∣∣
z0−ε

= 0

It follows from this that
∂Φ
∂z

∣∣
z0+ε

− ∂Φ
∂z

∣∣
z0−ε

= −Q

ε0
δ (x− x0) δ (y − y0)

This gives us the next condition on the Fourier coefficients, substituting the expressions for Φ into
the basis function expansion:∑
n,m

[
−A>

nmγnm cosh (γnm (c− z0)) −A<
nmγnm cosh (γnmz0)

] [
sin

(nπx
a

)
sin

(mπy
b

)]
= −Q

ε0
δ (x− x0) δ (y − y0)

Now using the same identity as before:

2
L

ˆ L

0
dx sin

(nπx
L

)
sin
Å
n′πx

L

ã
= δn,n′

Multiplying both sides by a sine of n′ term and a sin of m′ term, then integrating, we find that

γnm

[
A>

nm cosh (γnm (c− z0)) +A<
nm cosh (γnmz0)

]
= 4
ab

Q

ε0
sin

(nπx0
a

)
sin

(mπy0
b

)
Note that we know everything on the riht side, and we denote this as cnm. We have two simultaneous
equations for the Anm coefficients, which if solved give us that:

A<
nm = cnm sinh (γnm (c− z0))

γnm sinh (γnmc)

A>
nm = cnm sinh (γnmz0)

γnm sinh (γnmc)

Now that we know what the Anm coefficients are, we can substitute them into the definition of Φ.
We are eventually left with

Φ (x, y, z) =
∑
n,m

4
ab

Q

ε0
sin

(nπx
a

)
sin

(nπx0
a

)
sin

(mπy
b

)
sin

(mπy0
b

) ïsinh (γnm (c− z>)) sinh (γnmz<)
γnm sinh (γnmc)

ò
Where z> is the larger of the z and z0, and z< is the smaller of the two. This enforces the correct
symmetries of the system and matches the two definitions of Φ that we had when we partitioned
the box into two sections.
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3.11.2 Spherical Coordinates

Consider a sphere of radius a, with surface potential given by V (a, θ, ϕ) = V0 (θ, ϕ). We want to
find the potential outside the sphere. To do this, we need to solve Laplace’s equation:

∇2V = 0

with our given boundary conditions.

We can use separation of variables, and assume that our solution, denoted k, splits into 3 parts:

k (r, θ, ϕ) = R (r)P (θ) Φ (ϕ)

Which can be inserted into Laplace’s equation in spherical coordinates:

1
r2

1
R

d

dr

Å
r2dR

dr

ã
+ 1
P

1
r2 sin θ

d

dθ

Å
sin θdP

dθ

ã
+ 1
r2 sin2 θ

1
Φ
d2Φ
dϕ2 = 0

Now we can rewrite this to get multiple equations that are equal to the same constant, as is usually
done with separation of variables. The first equation we can separate out is the Φ equation:

− 1
Φ
d2Φ
dϕ2 = m2

Where we have chosen the constant of separation to be m2. This has solution Φ = eimϕ, where m
can be an integer (since Φ (0) = Φ (2π)).

The second equation we can separate out is the radial and angular portions:

1
R

d

dr

Å
r2dR

dr

ã
= − 1

P sin θ
d

dθ

Å
sin θdP

dθ

ã
+ m2

sin2 θ

Which can also be separated out into two equations, with a different separation constant, chosen to
be l (l + 1) :

1
R

d

dr

Å
r2dR

dr

ã
= l (l + 1)

1
P sin θ

d

dθ

Å
sin θdP

dθ

ã
+ m2

sin2 θ
= l (l + 1)

Looking at the radial equation, we have:

d2R

dr2 + 2
r

dR

dr
− l (l + 1) R

r2 = 0

The solution to this will be some power law, since we have equal powers of r in the denominator:

R (r) = rl

R (r) = 1
rl+1

Which we can find by assuming the solution is rn for some n, and then plugging it back into the
equation to find the conditions on n.
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For the radial equation:

1
sin θ

d

dθ

Å
sin θdP

dθ

ã
+
Å
l (l + 1) − m2

sin2 θ

ã
P = 0

If we make the substitution x = cos θ:

d

dx

ï(
1 − x2) dP

dx

ò
+
ï
l (l + 1) − m2

1 − x2

ò
P = 0

This is a standard differential equation, it is the associated Legendre equation, and the solutions are
the Legendre polynomials.

When θ goes from 0 to π, which is when we are covering the entire sphere with our boundary
condition, l and m will actually be integers, and l will in fact be a positive integer, and m will range
from −l to l in integer increments (taking on a total of 2l + 1 values).

Let us solve this Legendre differential equation. To start, we consider the case where m = 0. This
corresponds to the case where our boundary conditions are independent of ϕ:

d

dx

Å(
1 − x2) d

dx
Pl (x)

ã
+ l (l + 1)Pl (x) = 0

The well-behaved solutions are the Legendre polynomials, which by convention are normalized such
that Pl (1) = 1. A compact representation of the polynomials is the Rodrigues formula:

Pl (x) = 1
2ll!

dl

dxl

(
x2 − 1

)l

The Legendre polynomials satisfy an orthogonality condition, and they form a complete basis on
the range [−1, 1], much like sines and cosines in the Fourier series:

f (x) =
∞∑

l=0
AlPl (x)

Where the coefficients can be determined via the orthogonality of the Legendre polynomials.

Now let us return to the case where m ̸= 0. The solutions are now given by the associated Legendre
functions. For positive m:

Pm
l (x) = (−1)m (

1 − x2)m/2 dm

dxm
Pl (x)

The solutions for negative m are related to the positive m solutions, and therefore they are not
linearly independent. The associated Legendre functions satisfy the orthogonality condition of the
Legendre polynomials, and for every value of m, the Pm

l (cos θ) eimϕ functions form a complete set
of orthogonal functions on the unit sphere. These are the spherical harmonics, and are denoted by
Ylm (θ, ϕ) :

Ylm (θ, ϕ) =
 

(2l + 1) (l −m)!
4π (l +m)! Pm

l (cos θ) eimϕ
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These have an orthogonality relation:
ˆ 2π

0
dϕ

ˆ 1

−1
d (cos θ)Yl′m′Ylm = δl′lδm′m

This is the reason the prefactor is chosen, so that we are left with just a delta function.

From this discussion, it follows that the general form of the potential outside the sphere is given by

V (r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

Å
almr

l + blm
1
rl+1

ã
Ylm (θ, ϕ)

In this problem, we need the potential to go to 0 at infinity, so the alm terms must vanish, since
rl blows up at infinity. In the case where r becomes small (inside the sphere), we would have had
blm = 0.

We now impose the boundary conditions at r = a:

V0 (θ, ϕ) =
∑

l

∑
m

blm

al+1Ylm (θ, ϕ)

Now finding the blm coefficients are the same as finding the coefficients of a Fourier series, we utilize
the orthogonality condition. We multiply by Y ∗

l′m′ :
ˆ
dΩY ∗

l′m′ (θ, ϕ)
ñ∑

lm

blm

al+1Ylm (θ, ϕ)
ô

=
ˆ
dΩY ∗

l′m′ (θ, ϕ)V0 (θ, ϕ)

From this, we find that

blm = al+1
ˆ
dΩY ∗

lm (θ, ϕ)V0 (θ, ϕ)

Taking these and inserting them into the solution for the potential outside the sphere:

V (r, θ, ϕ) =
∞∑

l=0

l∑
m=−l

(a
r

)l+1
Ylm (θ, ϕ)

ˆ
dΩ′ Y ∗

lm

(
θ′, ϕ′)V0

(
θ′, ϕ′)

Let us do another example. We want to find the Dirichlet Green’s function for the inside of a sphere
of radius b centered at the origin, at some point inside the sphere r′.

We have a Green’s function that satisfies the condition:

∇2G = −4πδ3 (r − r′)
subject to the condition that G (r, r′) = 0 at r = b, which is the definition of Dirichlet boundary
conditions.

We want to look for a solution that is expanded in terms of the spherical harmonics:

G
(
r, r′) =

∑
lm

glm (r)Ylm (θ, ϕ)
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We can insert this into the differential equation:

∑
lm

ï
d2glm

dr2 + 2
r

dglm

dr
− l (l + 1) glm

r2

ò
Ylm (θ, ϕ) = −4πδ3 (r − r′)

Multiplying both sides by Y ∗
l′m′ (θ, ϕ) and integrating over the unit sphere:

d2gl′m′

dr2 + 2
r

dgl′m′

dr
− l′

(
l′ + 1

) gl′m′

r2 = −4π
ˆ
dΩY ∗

l′m′ (θ, ϕ) δ3 (r − r′)
We can write out the delta function, δ3 (r − r′) = δ (r − r′) δ (cos θ − cos θ′) δ (ϕ− ϕ′) /r2, and we
note that the second two terms are 1 when we integrate over the unit circle, and thus we are left
with:

d2gl′m′

dr2 + 2
r

dgl′m′

dr
− l′

(
l′ + 1

) gl′m′

r2 = −4π
r2 Y

∗
lm

(
θ′, ϕ′) δ (r − r′)

Thus we have an equation that the coefficients must satisfy:

d2glm

dr2 + 2
r

dglm

dr
− l (l + 1)

r2 glm = −4π
r2 Y

∗
lm

(
θ′, ϕ′) δ (r − r′)

To solve this, we note that the right side is always zero, except when r = r′. Away from r = r′, we
have that

glm (r) = Almr
l +Blm

1
rl+1

In general, the values of Alm and Blm are different for r > r′ and r < r′. For r < r′, we have A<
lm

and B<
lm, and for r > r′, we have A>

lm and B>
lm. We now have to stitch those two solutions together,

across the point where the charge is.

The solution has to be smooth at r = 0, so B<
lm = 0. If we now impose the Dirichlet boundary

condition, glm (r) = 0 for r = b:

A>
lmb

l +B>
lm

1
bl+1 = 0

B>
lm = −A>

lmb
2l+1

We now only have two unique coefficients that we have to determine:

glm (r) =
{
A<

lmr
l, r < r′

A>
lm

Ä
rl − b2l+1

rl+1

ä
, r > r′

Now we need to stitch these two solutions together at r = r′. Requiring continuity gives us that

g<
lm

(
r′) = g>

lm

(
r′)

A<
lm = A>

lm

Ç
1 − b2l+1

(r′)2l+1

å
We will find the second condition by integrating our differential equation in a small region that
contains r = r′. We do this because we expect something on the left side of the equation to create a
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delta function. The only way for this to happen is for dglm
dr to be discontinuous, and then the second

derivative term generates a delta function. To make this rigorous, we integrate over a region from
r′ − ε and r′ + ε:

ˆ r′+ε

r′−ε
dr

Å
d2glm

dr2 + 2
r

dglm

dr
− l (l + 1)

r2 glm

ã
= −4π

ˆ r′+ε

r′−ε
dr

1
r2Y

∗
lm

(
θ′, ϕ′) δ (r − r′)

dglm

dr

∣∣
r+ε

−dglm

dr

∣∣
r′−ε

= −4π
r′2Y

∗
lm

(
θ′, ϕ′)

The left side is found by the fact that glm is continuous over the region, so that term over a tiny
region is zero. The first derivative has a discontinuity, but other than that it is also continuous, so
the term vanishes. Finally, the second derivative term remains, since it is singular. We then use
the fundamental theorem of calculus to get the evaluation at the bounds. This gives us the jump
condition at r = r′, if we insert our expressions for glm:

A>
lm

Ç
lr′(l−1) + (l + 1) b2l+1

r′(l+2)

å
−A<

lm

Ä
lr′i(l−1)

ä
= −4π

r′2Y
∗

lm

(
θ′, ϕ′)

Now we have two simultaneous equations for the Alm coefficients.

Now solving for the coefficients, and substituting them back into the definition of glm, and substituting
that into the definition of G (r, r′) :

G
(
r, r′) =

{∑
lm

4π
2l+1r

lr′l
î

1
r′(2l+1) − 1

b2l+1

ó
Y ∗

lm (θ′, ϕ′)Ylm (θ, ϕ) , r < r′∑
lm

4π
2l+1r

lr′l
î

1
r(2l+1) − 1

b2l+1

ó
Y ∗

lm (θ′, ϕ′)Ylm (θ, ϕ) , r > r′

Note that if we flip r and r′, we see that the two equations switch with each other, along with the
conditions. This will always be true when solving for the Green’s function for Dirichlet boundary
conditions.

The standard way of writing the Green’s function is

G
(
r, r′) =

∑
lm

4π
2l + 1r

l
<r

l
>

ñ
1

r2l+1
>

− 1
b2l+1

ô
Y ∗

lm

(
θ′, ϕ′)Ylm (θ, ϕ)

Where r> is the larger of r and r′, and r< is the smaller of the two.

In the limit where b → ∞, the radius goes to infinity, we expect this to result in the point charge
solution, since all we are saying is that the potential goes to zero at infinity.

lim
b→∞

G
(
r, r′) =

∑
lm

4π
2l + 1r

l
<r

−(l+1)Y ∗
lm

(
θ′, ϕ′)Ylm (θ, ϕ)

This should be the Green’s function for empty space:

G
(
r, r′) = 1

|r − r′|

This turns out to be true, but requires many identities about Legendre polynomials to prove.
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3.11.3 Cylindrical Coordinates

Let us deal with cylindrical coordinates with an example.

Consider an infinitely long cylinder of radius b, aligned so its axis lies on the z axis. The potential
is independent of z, and is given by V0 (ϕ). We want to find the potential everywhere inside the
cylinder.

We want to solve Laplace’s equation:

∇2V = 0

With the boundary conditions V (ρ, ϕ) = V0 at ρ = b.

In cylindrical, Laplace’s equation takes the form:

1
ρ

∂

∂ρ

Å
ρ
∂V

∂ρ

ã
+ 1
ρ2
∂2V

∂ϕ2 + ∂2V

∂z2 = 0

We can immediately drop the z term, since we have no z dependence:

1
ρ

∂

∂ρ

Å
ρ
∂V

∂ρ

ã
+ 1
ρ2
∂2V

∂ϕ2 = 0

∂2V

∂ρ2 + 1
ρ

∂V

∂ρ
+ 1
ρ2
∂2V

∂ϕ2 = 0

Now by separation of variables, we aim to find a solution of the form V (ρ, ϕ) = R (ρ) Φ (ϕ). Inserting
this into our equation:

∂2R

∂ρ2
1
Φ + 1

ρ
Φ∂R
∂ρ

+ 1
ρ2R

∂2Φ
∂ϕ2 = 0

ρ2

R

ï
d2R

dρ2 + 1
R

dR

dρ

ò
= − 1

Φ
d2Φ
dϕ2

This separates into two equations:

ρ2

R

ï
d2R

dρ2 + 1
R

dR

dρ

ò
= ν2

− 1
Φ
d2Φ
dϕ2 = ν2

This second equation can be rewritten:

d2Φ
dϕ2 + ν2Φ = 0

Which has solutions that are sines and cosines:

Φ (ϕ) = A sin (νϕ) +B cos (νϕ)
= A′ sin (νϕ+ α)

Since Φ (ϕ) = Φ (ϕ+ 2π), this gives us the condition that ν ∈ Z.
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Now let us consider the other equation:

d2R

dρ2 + 1
ρ

dR

dρ
− ν2

ρ2 = 0

Once again seeing that each term has the same powers of R over the same powers of ρ, we know
that R ∼ ρn. Inserting this, we find that R = ρν and R = ρ−ν .

The general solution is then

V (ρ, ϕ) = a0 + b0 ln ρ+
∞∑

n=1
anρ

n sin (nϕ+ αn) +
∞∑

n=1

bn

ρn
sin (nϕ+ βn)

Since we care about the inside of the cylinder, we must include the case where r = 0, and thus we
cna throw away the bn and b0 term, since the log and the ρ−n explode there. Thus we are left with

V (ρ, ϕ) = a0 +
∞∑

n=1
anρ

n sin (nϕ+ αn)

We rewrite this as

V (ρ, ϕ) = 1
2c0 +

∞∑
n=1

ρn [cn cos (nϕ) + dn sin (nϕ)]

At ρ = b, we impose the boundary condition:

V (b, ϕ) = V0 (ϕ)
1
2c0 +

∞∑
n=1

bn (cn cos (nϕ) + dn sin (nϕ)) = V0 (ϕ)

Now we note that this is just a Fourier series for V0. We invert this to find the coefficients cn and
dn:

cn = 1
π

1
bn

ˆ 2π

0
dϕ′ V0

(
ϕ′) cos

(
nϕ′)

dn = 1
π

1
bn

ˆ 2π

0
dϕ′ V0

(
ϕ′) sin

(
nϕ′)

We can start putting these all together, by writing out the potential:

V (ρ, ϕ) = 1
2π

ˆ 2π

0
dϕ′ V0

(
ϕ′) +

∞∑
n=1

1
π

ρn

bn

ˆ 2π

0
dϕ′ V0

(
ϕ′) [cos

(
nϕ′) cos (nϕ) + sin

(
nϕ′) sin (nϕ)

]
= 1

2π

ˆ 2π

0
dϕ′ V0

(
ϕ′) +

∞∑
n=1

1
π

ρn

bn

ˆ 2π

0
dϕ′ V0

(
ϕ′) cos

[
n
(
ϕ− ϕ′)]

= 1
2π

ˆ 2π

0
dϕ′ V0

(
ϕ′) ñ1 + 2

∞∑
n=1

(ρ
b

)n
cos

[
n
(
ϕ− ϕ′)]ô

= 1
2π

ˆ 2π

0
dϕ′ V0

(
ϕ′) ñ1 + 2

∞∑
n=1

(ρ
b

)n
Re
î
ein(ϕ−ϕ′)

óô
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Now consider:

Re
ñ
1 + 2

∞∑
n=1

(ρ
b

)n
ein(ϕ−ϕ′)

ô
= Re

ñ
1 + 2

∞∑
n=1

zn

ô
Where z = ρ

b e
i(ϕ−ϕ′). This is a geometric series:

Re
ñ
1 + 2

∞∑
n=1

zn

ô
= Re

ï
1 + 2z

1 − z

ò
For |z| < 1. Thus we have that

Re
ñ
1 + 2

∞∑
n=1

(ρ
b

)n
ein(ϕ−ϕ′)

ô
=

1 − ρ2

b2

1 − 2ρ
b cos (ϕ− ϕ′) + ρ2

b2

Inserting this into our expression for V (ρ, ϕ), we have that

V (ρ, ϕ) = 1
2π

ˆ 2π

0
dϕ′ V0

(
ϕ′) ï b2 − ρ2

b2 − 2ρb cos (ϕ− ϕ′) + ρ2

ò
Which is our final solution for the potential inside the cylinder.
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