
PHYS457 Notes Hersh Kumar
Page 1

Contents
1 Church-Turing Thesis 3

2 Reversible Computation 3

3 Interference 5

4 Axioms of QM 6
4.1 State Space Postulate . 6
4.2 Evolution Postulate . 7
4.3 Composition Postulate . 8
4.4 Measurement Postulate . 9

4.4.1 Partial Measurement . 10

5 No-Cloning Theorem 11

6 Quantum Protocols 12
6.1 Bennett’s 4 Laws . 12
6.2 Super-dense Coding . 12
6.3 Quantum Teleportation . 14

7 Zeno Effect, Anti-Zeno Effect 15
7.1 Zeno Effect . 15
7.2 Anti-Zeno Effect . 15

8 Elitzur-Vaidman Bomb 16

9 Quantum Gates and Circuits 17
9.1 Pauli-Rotation Gates . 18
9.2 General 1-qubit Unitary Gates . 20
9.3 Universality . 20
9.4 Efficiency of Approximating General Functions . 21

9.4.1 Approximation of Unitary Gates . 21
9.4.2 Solovay-Kitaev Theorem . 23

10 Quantum Algorithms 23
10.1 Query Model . 23
10.2 Deutsch Algorithm . 24

10.2.1 Phase Kickback . 24
10.3 Deutsch-Josza Algorithm . 25
10.4 Simon’s Algorithm . 27
10.5 Grover’s Algorithm . 29

10.5.1 Lower Bounding Grover’s Algorithm . 31
10.6 Shor’s Algorithm . 33

10.6.1 Quantum Phase Estimation . 33
10.6.2 Public-key crypto-systems and RSA . 36
10.6.3 Solving Factorization with Quantum Computing 36
10.6.4 Quantum Order Finding . 37

PHYS457 Notes Hersh Kumar
Page 2

11 Mixed States 38
11.1 Composite Systems and Partial Trace . 40
11.2 Determining Entanglement . 41
11.3 Schmidt Decomposition . 41
11.4 Working with Density Operators . 41

12 Quantum Error Correction 42
12.1 Classical Error Correction . 42
12.2 Quantum Error Correction . 43

12.2.1 9-qubit Shor’s Code . 45
12.3 Stabilizer Codes . 45

PHYS457 Notes Hersh Kumar
Page 3

1 Church-Turing Thesis
We begin by asking the question, what can be computed? How do we make a mathematically precise
definition of what it means to be computable. Turing created a model to define computability using
a Turing Machine. It is an abstract mathematical model, and the claim is that anything that can
be computed by a Turing machine is computable, and anything else is not computable. Roughly
speaking, it is a tape machine with a pointer to a section of the tape, and we can either read or
write onto the tape, or move it or keep it in the same location. Everything that can be computed
can be done by this machine.

We have a mathematical system based on functions, known as lambda calculus, which is a mathe-
matical representation of computation. Both Turing machines and lambda calculus can be used to
define the class of computable functions, and although they are both different, they generate the
same class of functions.

How is this connected to quantum computing? Well we have a definition of computability, but
whether this covers all computable operations is unknown, there might be some real world function
that is not doable by a Turing machine but is computable.

Theorem 1.1. The Church-Turing thesis states that every effectively calculable function is a
computable function.

However, we have examples that challenge the Church-Turing Thesis. The first is randomize
computation. In λ-calc, or in Turing machines, we don’t have any random numbers, whereas in
the real world we do have random number generation (for example in sorting algorithms or prime
number testing). This is an open question in complexity theory. We don’t know whether we can
model random number generation mathematically. This raises the extended Church-Turing Thesis,
which includes randomness into the computational model. You can think of this as adding another
tape to the Turing machine that is full of random numbers. This is a more powerful model than the
regular Turing machine, and can cover functions that include random numbers.

The second challenge to the Church-Turing thesis is quantum computation. We don’t know anything
that is provable that separates quantum computation from classical computation fully. If we look at
reality, we don’t know how to simulate a quantum computation on a classical computer without
using exponential resources, let alone polynomial overheads.

2 Reversible Computation
Reversible computation is a general concept, and it is based on the fact that we want to reverse
engineer the effect of a computation, and get the inputs from the outputs. This is important because
quantum computation must be reversible, you cannot lose information. The motivation for classical
reversible computation is that reversible computations dissipate no heat from the loss of information
(there will be some heat generated by the electronics but the actual information loss also generates
heat).

Note that we can make every classical computation reversible, so we can turn irreversible computa-
tions into reversible ones.

PHYS457 Notes Hersh Kumar
Page 4

Since quantum computation is less high level than classical computation currently, we think of
things such as operations and algorithms as circuits. These circuits map boolean inputs to boolean
outputs:

f : {0, 1}n → {0, 1}m

Suppose we want to find the smallest universal gate set, the smallest set of gates that can be used
to generate all possible circuits. Classically, the set of gates {NOT,AND,OR} is universal, and we
also know that {NAND} is itself universal.

Suppose we want to convert an AND gate to a reversible computation. The AND gate takes in x
and y, and returns x ∧ y. This is irreversible, because we cannot get the inputs from the output.
We can define the Toffoli gate, which is a 3-qubit input, 3-qubit output gate, which takes in x, y,
and z, and returns x, y, and (x∧ y) ⊕ z. We can see that if we apply another Toffoli gate, the value
in the z bit will be

(z ⊕ (x ∧ y)) ⊕ (x ∧ y) = z

For the case of the AND gate, we can use the Toffoli gate, and have z = 0, which will take in

x, y, 0 → x, y, 0 ⊕ (x ∧ y) = x, y, x ∧ y

Thus we can see that we have increased the number of qubits, but have made the AND gate
reversible. Similarly, we can implement a reversible NOT:

x, 1, 1 → x, 1, 1 ⊕ (x ∧ 1) = x, 1, x̄

We also care about a gate known as a FAN-OUT gate, also called a copy gate:

FAN-OUT = TOFFOLI(x, 1, 0) = x, 1, x

If we convert our irreversible gates to reversible gates and substitute them in, we see that the
computation has been converted to a reversible computation, just with the addition of ancillary
qubits. We see that if we have a irreversible circuit of n inputs, we have n output bits that are the
same as the inputs, m output bits, and then some number of ancillary qubits.

We can use a simple trick to clean the workspace, because the ancilla qubits must be intialized to
some values. We have n input bits, m output bits, initially set to 0, and then our workspace bits.
The circuit keeps the input bits the same, modifies the outputs, and then leaves our workspace bits
in unknown states. The trick is to use the FAN-OUT gate to copy each output to a new register of
bits. After copying them to the new register, we can run the circuit’s inverse on the initial register,
which will by definition of a reversible circuit, leave our workspace and the output bits back to their
initial states.

We can represent quantum states and circuits via vectors and matrices. Suppose we have a NOT
gate, which maps 0 to 1 and 1 to 0. This is a mapping between two objects in a vector space, we
can represent 0 via a 2D vector:

0 =
Å

1
0

ã
And we can express the NOT gate as a matrix:

NOT =
Å

0 1
1 0

ã

PHYS457 Notes Hersh Kumar
Page 5

And we see that if we act this matrix on a 0 vector, we get the 1 vector, and vice-versa. Also note
that when we represent an operation, we can think of it as a permutation, and since our basis
vectors will only have 1 nonzero element each, the matrix will have only 1 nonzero element per
column.

So we have seen the matrix/vector formalism for circuits, but how do we implement randomized
computation? When we represent random bits, we have a probability for each measurement, 0 and
1, represented by p0 and p1 respectively. We know that p0 + p1 = 1. We can represent a random bit
as a linear combination of the states they represent:

p0 |0⟩ + p1 |1⟩ =
Å
p0
p1

ã
If we apply a NOT gate to this via the matrix:Å

0 1
1 0

ãÅ
p0
p1

ã
=
Å
p1
p0

ã
This random bit represents the state

p1 |0⟩ + p0 |1⟩
This is also a random bit, but it has flipped probabilities for the measurements. Also note that this
allows us to have the entire state known, rather than just sampling the probability distribution, the
vector formalism allows us to know everything about the distribution.

Now lets move to the main topic of the course, what happens with quantum computing. The main
keyword we use is quantum duality, which stems back to the discovery of wave-particle duality
in regards to light. When it comes to computation, we have that interference can change our
computation. At a high level, if we have a computation, we can think of it as a computation
path. We take the input, do intermediary operations, and end up with an output. When we have
randomized computation, we have more than one path, the more randomness, the more the number
of branches. The probability of getting an output is the sum of probabilities of the paths that lead
to the output you want.

If we bring in the idea of interference, we could have interference between different computation
paths. Instead of having just a sum of probabilities, we can have paths that cancel each other
out due to interference. Mathematically, this means that each path still has a probability, but the
probability distribution is not as simple. In fact, quantum algorithms can be used to exploit the
interference to cancel out paths that lead to outputs that you don’t want, improving the probability
of reaching the correct answer, surpassing the abilities of classical randomized computations.

3 Interference
Suppose we want to do some photonic computation. We have two optical paths, path 0 and path
1. Each path has its own detector, D0 and D1 respectively. If this was a classical experiment, the
beam splitter splits the photon beam into a 50/50 split of probability for each path. We then see
that the probability of being detected at D0 is still 50/50, since the two beam splitters will keep the
two paths equal.

If we treat it as a quantum experiment, we have to treat the beamsplitter’s operation in a quantum
formalism. We have that the operations for each beam splitter is

G1 = G2 = 1√
2

Å
1 1
1 −1

ã

PHYS457 Notes Hersh Kumar
Page 6

To find what happens after the first beamsplitter G1, we can apply it to the basis vectors:

G1 |0⟩ G1 |1⟩

We can then add on the effect of G2 after this:

G2G1 |0⟩ G2G1 |1⟩

If we compute these two, we see that G2G1 |0⟩ = |0⟩. How can we interpret this? Well classically
we said that we would have a 50/50 split, but now when using the quantum formalism we see
that we never have a chance of seeing D1 if we start with a 0. This is an example of interference,
as we see that before the action of G2, we have a chance of being measured as 1, but the second
Hadamard gate removes the probability of getting a 1, it interferes and “removes” the path that
leads to measuring a 1.

4 Axioms of QM
We will talk about 4 postulates, where we have discretized to finite spaces.

1. State space postulate

2. Evolution postulate

3. Composite system postulate

4. Measurement postulate

4.1 State Space Postulate
Let us begin with the state space postulate. We can think of any quantum state as a unit vector of
Cd. A classical bit can only take the states |0⟩ and |1⟩. However, a qubit can take advantage of
the fact that |0⟩ and |1⟩ span the space, and we can represent a qubit as an arbitrary vector in the
space:

|ψ⟩ =
Å
α0
α1

ã
∈ C2

Where α0, α1 ∈ C2 and |α0|2 + |α1|2 = 1.

We can also define the conjugate transpose:

⟨ψ| = |ψ⟩† =
(
α∗

0 α∗
1
)

We can then define an inner product:

⟨ψ|ψ⟩ = α∗
0α0 + α∗

1α1

This is the same as the sum of the magnitudes that we had before. For a unit vector, the inner
product with itself will be 1.

Using Dirac notation, we can represent |ψ⟩ as α0 |0⟩ +α1 |1⟩, which gets rid of a lot of the clunkiness
of the vector formalism. We can then write the bra:

⟨ψ| = (α0 |0⟩ + α1 |1⟩)† = α∗
0 ⟨0| + α∗

1 ⟨1|

PHYS457 Notes Hersh Kumar
Page 7

We can see that this does indeed get us the matrix form that we defined before. We can also write
out the inner product using the two statements we just wrote, giving us 4 terms, two of which are 0,
because we have an orthonormal basis. We see that we will be left with the exact definition that we
had before.

⟨ψ|ψ⟩ = α∗
0α0 + α∗

1α1

We can also define an outer product, which is when we flip the order of the inner product, and we
see that we get a matrix:

|ψ⟩ ⟨ψ|

For example:

|0⟩ ⟨0| =
Å

1
0

ã (
1 0

)
=
Å

1 0
0 0

ã
In fact, it is true that |0⟩ ⟨0| + |1⟩ ⟨1| generates the identity matrix.

Lets apply this identity matrix to some arbitrary vector:

I |ψ⟩ = (|0⟩ ⟨0| + |1⟩ ⟨1|)(α0 |0⟩ + α1 |1⟩)

= α0 |0⟩ ⟨0|0⟩ + α0 |1⟩ ⟨1|0⟩ + α1 |0⟩ ⟨0|1⟩ + α1 |1⟩ ⟨1|1⟩

= α0 |0⟩ + α1 |1⟩

We see that this does indeed encode the identity operation.

How can we visualize a qubit? We have 4 parameters: which we can reduce:

|ψ⟩ = γ0e
iϕ0 |0⟩ + γ1e

iϕ1 |1⟩

= eiϕ0
Ä
γ0 |0⟩ + γ1e

i(ϕ1−ϕ0) |1⟩
ä

The outer term is known as a global phase, and is a non-measurable quantity. We also have that
γ2

0 + γ2
1 = 1, and we can represent the 3 parameters that we have left as defining a unit sphere.

Using spherical coordinates, we have that an arbitrary ket can be represented as

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩

We now have 2 parameters, θ and ϕ, where θ represents the angle from the vertical axis, and ϕ is
the sweep angle. We can also note that |1⟩ is the South pole of the sphere, and |0⟩ is the North
pole. The |+⟩ state, the equal superposition, is given by θ = π

2 and ϕ = 0. This lies along the x
axis, and the |−⟩ state is given by a rotation of π in the ϕ.

4.2 Evolution Postulate
The second postulate is the evolution postulate. For us, this tells us that two properties will always
hold no matter what. The first is linearity. This means that if we have some mapping Φ:

Φ(α0 |0⟩ + α1 |1⟩) = Φ(α0 |0⟩) + Φ(α1 |1⟩)

The second property is that all mappings preserve the unity of the vectors, they cannot change the
magnitude. Suppose we have some mapping M that is represented by a matrix. If we apply it to

PHYS457 Notes Hersh Kumar
Page 8

any state, |M |ψ⟩ |2 = ⟨ψ|M †M | |ψ⟩⟩ = ⟨ψ|ψ⟩ = | |ψ⟩ |2. This tells us that M †M = I. This is the
derivation for the fact that quantum operators must be unitary.

Let us list some important 1-qubit unitary matrices. We have the identity:

I =
Å

1 0
0 1

ã
And the 3 Pauli matrices:

X =
Å

0 1
1 0

ã
Y =

Å
0 −i

−i 0

ã
Z =

Å
1 0
0 −1

ã
These matrices have some special properties:

Tr(X) = Tr(Y) = Tr(Z) = 0

X2 = Y 2 = Z2 = I

Another thing to note is that the 4 matrices given, I,X, Y, Z, generate an orthonormal basis for
C2×2. Another important gate is the Hadamard gate:

H = 1√
2

Å
1 1
1 −1

ã
H |0⟩ = |+⟩ H |1⟩ = |−⟩

We can also define the computational basis, which is the basis given by the states {|0⟩ , |1⟩}. Note
that we can also create a basis using {|+⟩ , |−⟩}.

If we are in the computational basis, the X gate is a bit flip, and Z is a phase flip. However, if we’re
in the Hadamard basis, we see that X |+⟩ = |+⟩, there is no change. Looking at X |−⟩, we see that
X |−⟩ = − |−⟩. We see that in the Hadamard basis, X acts as a phase flip, rather than a bit flip.

Looking at the Z gate, in the ± basis, we see that Z acts as a bit flip. The X and Z gates essentially
have flipped their actions when we change their basis.

4.3 Composition Postulate
The third postulate refers to composite systems. When we have a system of two qubits, we rely on
the tensor product space:

Cd1 ⊗ Cd2 ∼= Cd1,d2

We see that when we add more qubits, we add more and more tensor products to add more spaces:

C2 ⊗ C2 ⊗ · · · ⊗ C2 = C2n

This is why quantum systems are hard to simulate classically, the state space grows exponentially.

Lets do an example. Suppose we have two qubits, both in state |0⟩:

|0⟩ ⊗ |0⟩ =
Å

1
0

ã
⊗
Å

1
0

ã
=

Ü
1
Å

1
0

ã
0
Å

1
0

ãê =

Ü
1
0
0
0

ê

PHYS457 Notes Hersh Kumar
Page 9

Note that the order of the qubits matters, even if they are in the same state.

If we do the states |0⟩ and |1⟩:

|0⟩ ⊗ |1⟩ =

Ü
0
1
0
0

ê
To prove that the order matters, we can compute |1⟩ ⊗ |0⟩:

|1⟩ ⊗ |0⟩ =

Ü
0
0
1
0

ê
We see that the two states have different statevectors.

For any state |ψ⟩ ∈ Cd1 ⊗ Cd2 , if |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, then the state is a product state. Otherwise, it
is known as an entangled state.

For example, if we think of a two-qubit state:

|ψ⟩ = 1√
2

(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

This is known as an EPR pair or a Bell pair.

4.4 Measurement Postulate
So far we have had no interaction between classical computation and quantum computation. We
need som classicla method of reading out data, in order for our quantum computers to be usable.
Consider a d dimensional quantum state:

|ψ⟩ ∈ Cd

When measuring, we first choose an orthonormal basis for the space:

{|φi⟩}

The outputs will be an integer from 1 to d, each one corresponding to a basis vector. Post-
measurement, we change the quantum state itself.

We have our initial state |ψ⟩, and we want to decompose it using the measurement basis:

|ψ⟩ =
∑

αi |φi⟩

We then say that the probability of outcome i corresponding to index i in the vector, is |αi|2, and
the post-measurement state when the outcome is i is |φi⟩. This is a valid distribution because our
initial state is a unit vector, and thus

∑
|αi|2 = 1.

Let’s do an example of this. Assume we are in the state |0⟩ ∈ C2. Suppose we measure the
qubit in the computational basis, {|0⟩ , |1⟩}, and measure an identical qubit in the Hadamard basis,
{|+⟩ , |−⟩}.

PHYS457 Notes Hersh Kumar
Page 10

For the first measurement:
|0⟩ = 1 |0⟩ + 0 |1⟩

We can see that the probability of measuring 0 is |1|2 = 1, and the probability of measuring a 1 is 0.
The post-measurement state will be |0⟩.

If we instead measure in the Hadamard basis:

|0⟩ = 1√
2

(|+⟩ + |−⟩)

Which can be obtained by using ⟨+|0⟩ and ⟨−|0⟩ for the coefficients. For this reason, the probability
of measuring |+⟩ can also be given by | ⟨+|0⟩ |2. We see that we have a 50/50 split in probability,
we can measure either |+⟩ or |−⟩ evenly. If we measure |+⟩, our post-measurement state will be |+⟩.
We see that we start with the same state, but obtained different results by measuring in different
bases, something that is not possible in classical computation.

4.4.1 Partial Measurement

Suppose we have a composite system:

|ψ⟩ ∈ Cd1 ⊗ Cd2

Suppose we wanted to measure the first qubit, but not the second one. We can decompose our state,
but we are only given a basis for the first system, not the second system:

|ψ⟩ =
d1−1∑
i=0

αi |φi⟩ ⊗ |ϕi⟩

Where {|φ⟩i} is the orthonormal basis of Cd1 , and |ϕi⟩ is a unit vector, not necessarily a basis vector.
Applying the partial measurement, the probability of outcome i is similar to what we see before,
|αi|2, but the difference is the post-measurement state, we are left in the state |φi⟩ ⊗ |ϕi⟩. This is a
product state, meaning that there is no entanglement post-measurement. This intuitively makes
sense, as we have converted quantum information to classical information, and entanglement is a
strictly quantum correlation.

Consider a two qubit system

|ψ⟩ =
Ç…

1
10 |00⟩ +

…
2
10 |01⟩

å
+
Ç…

3
10 |10⟩ +

…
6
10 |11⟩

å
Suppose we apply a computational basis measurement to the first qubit. The first thing that we
want to do is rewrite the state into the correct form:

|ψ⟩ = |0⟩ ⊗
Ç…

1
10 |0⟩ +

…
2
10 |1⟩

å
+ |1⟩ ⊗

Ç…
3
10 |0⟩ +

…
6
10 |1⟩

å
We now need to normalize our |ϕi⟩ vectors:

=
…

3
10 |0⟩ ⊗

Ç…
1
3 |0⟩ +

…
2
3 |1⟩
å

+
…

7
10 |1⟩ ⊗

Ç…
3
7 |0⟩ +

…
6
7 |1⟩
å

PHYS457 Notes Hersh Kumar
Page 11

This is the correct state, and thus we know that the probability of getting outcome 0 is 3
10 , with

post-measurement state

|0⟩ ⊗
Ç…

1
3 |0⟩ +

…
2
3 |1⟩
å

Similarly, we see that the probability of measuring 1 is 7
10 , and the post-measurement state is

|1⟩ ⊗
Ç…

3
7 |0⟩ +

…
6
7 |1⟩
å

If we apply a full measurement using the computational basis, {|00⟩ , |01⟩ , |10⟩ , |11⟩}. This is easier
to do than the partial measurement, and we can just read off the magnitude of the coefficients for
the probability. Note that if we look at the 4 possible outcomes and their probabilities, if we sum
the probabilities of the cases where the first qubit is |0⟩, we see that it adds to 3

10 , the same outcome
as the partial measurement we did on the first qubit. The same holds for measuring |1⟩.

If we only care about the output distribution, then the two measurements are equivalent, but when
we care about the output state, and whether we want to preserve the quantum nature of the state,
then the two are different.

Let’s do another example:
|ψ⟩ = 1√

2
(|00⟩ + |11⟩)

Doing a partial measurement in the computational basis to the first qubit, we can read off the
probabilities, P (|00⟩) = 1

2 , and P (|11⟩) = 1
2 . Making this harder, we can use the Hadamard basis

on the first qubit. We would go about this using the nice property that the EPR/Bell state has:

1√
2

(|00⟩ + |11⟩) = 1√
2

(|++⟩ + |−−⟩) = 1√
2

(|ψ0ψ0⟩ + |ψ1ψ1⟩)

Where {|ψ0⟩ , |ψ1⟩} form an orthonormal basis. Thus we see that we get the same results in the
Hadamard basis as we did in the computational basis.

5 No-Cloning Theorem
Theorem 5.1. There does not exist an operator U such that U |φ⟩ ⊗ |0⟩ = |φ⟩ ⊗ |φ⟩. There does
not exist a cloner that can map an unknown qubits state onto another qubit.

Proof. Assume we have a unitary operator U such that U |φ⟩ ⊗ |0⟩ = |φ⟩ ⊗ |φ⟩. Essentially, assume
we have an operator that works as a cloner, for any state |φ⟩.

Suppose |φ⟩ = |0⟩. By definition:
U |φ⟩ ⊗ |0⟩ = |0⟩ ⊗ |0⟩

And similarly if |φ⟩ = |1⟩:
U |φ⟩ ⊗ |0⟩ = |1⟩ ⊗ |1⟩

Now suppose we have some superposition of |0⟩ and |1⟩:

U(α |0⟩ + β |1⟩) ⊗ |0⟩ = (α |0⟩ + β |1⟩) ⊗ (α |0⟩ + β |1⟩)

PHYS457 Notes Hersh Kumar
Page 12

However, we can also compute this using linearity:

U(α |0⟩ + β |1⟩) ⊗ |0⟩ = α |00⟩ + β |11⟩

We computed the same thing using two different routes, so these should be the same thing. We see
that in general, these two are not equivalent to each other, leading to a contradiction. This unitary
operator U does not exist.

6 Quantum Protocols
6.1 Bennett’s 4 Laws

We have the definition of reduction, A ≥ B, which means that A can do the job of B. This isn’t
mathematically rigorous, but it helps. We can say that 1 qubit ≥ 1 classical bit. We can also say
that 1 qubit ≥ 1 ebit, where an ebit is an entangled bit, a shared EPR pair in this context. The
third statement is that 1 ebit + 1 qubit ≥ 2 classical bits. This is known as super-dense coding.
The 4th is that 1 ebit + 2 bits ≥ 1 qubit. This is known as quantum teleportation.

Note that we currently are working with noiseless channels, there is no information loss when we
transfer data from sender to receiver.

6.2 Super-dense Coding
We have a sender and a receiver. The sender gets some information, generally a boolean string
X∗ ∈ {0, 1}∗, and sends it to the receiver over our channel, and the receiver wants to recover the
boolean string. The trivial case is to just send over our string, but this is not the best method,
because we could have information loss during the transmission. This means that we want to have
some encoding of X∗, and then having a decoding that can recover the string. We can compress our
information to a lower dimension, so that we have to send as little information as possible.

We assume that X∗ is chosen uniformly randomly, and the channel has no noise. We also have a
stored resource r, which is something shared by both the sender and receiver, such as a source of
randomness. They cannot communicate using r, but they can both access it. We will see that if we
share a quantum resource, we can use it to transmit information.

If we shared a classical resource like classical randomness rc. Our encoding of the string will be
some function:

Encoding(X∗, rc)

and we have some function on the other end:

Decoding(Encoding(X∗, rc), rc)

Suppose instead we shared a quantum EPR pair:

1√
2

(|00⟩ + |11⟩)

with the first qubit staying with the sender and the second qubit staying with the receiver. We can
define the encoding:

Encoding(X∗, |ψ1⟩EP R)

PHYS457 Notes Hersh Kumar
Page 13

And the decoding:
Decoding (Encoding(X∗, |ψ1⟩EP R), |ψ2⟩EP R)

We see that the decoder has more information, with the access to the second qubit of the EPR pair.

Let’s now look at the protocol. We begin with an EPR pair, 1√
2(|00⟩ + |11⟩). We begin with some

local operation on the sender side, which applies the operation to the first qubit of the EPR pair.
We then send this first qubit over to the receiver. The receiver then uses some operation on both
qubits, to decode it. We can write this out more explicitly:

1√
2

(|0⟩S ⊗ |0⟩R + |1⟩S ⊗ |1⟩R)

The first step will encode at the sender side. The sender has two classical bits, z and x. To encode,
the sender applies ZzXx to the sender qubit of the EPR pair. We can define our notation, Z0/1

will do the identity if the bit is 0, and will do Z if the bit is 1, Similarly for X. Thus we see that
this is two operations, first applying either X or I, and then Z or I. There are 4 possible outcomes:

(z, x) = (1, 1) → ZX (1, 0) → ZI (0, 1) → IX (0, 0) → II

If we have the case (0, 1) for example:

(0, 1) → (X ⊗ I) |ψ⟩EP R = 1√
2

(|10⟩ + |01⟩)

And the case (1, 1):
(1, 1) → (ZX ⊗ I) |ψ⟩EP R = 1√

2
(− |10⟩ + |01⟩)

And the other two cases:

(0, 0) → (I ⊗ I) |ψ⟩EP R = 1√
2

(|00⟩ + |11⟩)

(1, 0) → (Z ⊗ I) |ψ⟩EP R = 1√
2

(|00⟩ − |11⟩)

We see that after the encoding, we have 4 possible 2-qubit states. We can see that the 4 different
states are all orthogonal, they form a orthonormal basis for the 2-qubit states. These are sometimes
known as the Bell basis:

{B00, B01, B10, B11}

And we note that all 4 of them are entangled states.

The second step is to send the S qubit over to the receiver side, so the receiver has both qubits.
The receiver now wants to recover which case it is. Now we need to measure using the Bell basis,
and that will return 100% correctly which basis state the pair was in. From this, the receiver will
know exactly what the values of z and x were.

We see that we have started with sharing an EPR pair, and sending 1 qubit, allowed us to transmit
2 classical bits of information.

PHYS457 Notes Hersh Kumar
Page 14

6.3 Quantum Teleportation
The goal here is to send quantum information without sending over a qubit.

We once again start with a shared EPR pair:

1√
2

(|0⟩S |0⟩R + |1⟩S |1⟩R)

We are also given an arbitrary quantums state |ψ⟩ = α |0⟩ + β |1⟩. In the whole system, we have 3
qubits in play. The whole quantum state can be written as

|Φ⟩ = |ψ⟩ ⊗ EPR

And we have that |ψ⟩ is on the sender side, and 1 qubit of the EPR pair on the sender side, with
only the second EPR qubit on the receiver side. We can write out the qubit states:

= (α |0⟩ + β |1⟩) ⊗ 1√
2

(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)

= 1√
2

(α |000⟩ + α |011⟩ + β |100⟩ + β |111⟩)

We need to do something to the two sender qubits that will somehow transfer the state of the
arbitrary state to the receiver qubit.

The first step is that the sender performs a Bell-basis measurement on the two sender qubits. This
is a partial measurement, and we’d have to write this out from the computational basis into the
Bell basis. We can use the properties that

|00⟩ = 1√
2

(|B00⟩ + |B10⟩)

|01⟩ = 1√
2

(|B01⟩ + |B11⟩)

|10⟩ = 1√
2

(|B01⟩ − |B11⟩)

|11⟩ = 1√
2

(|B00⟩ − |B10⟩)

Using there relationships, we can rewrite our state using the Bell basis:

|Φ⟩ = 1
2 (|B00⟩ ⊗ |ψ⟩ |B01⟩ ⊗X |ψ⟩ + |B10⟩ ⊗ Z |ψ⟩ + |B11⟩ ⊗XZ |ψ⟩)

When we do the Bell-basis measurement, we will recover the (z, x) information. We then send the
two classical x and z bits to the receiver. The receiver then applies the correction ZzXx to the
receiver side qubit.

For example, if both are 0, we do nothing, and we have the arbitrary state as the third qubit. The
same goes for the two states where only 1 bit is 1. For the case where we have z = x = 1, we have
ZXXZ |ψ⟩. We see that the inner X gates cancel out, and then the Z gates cancel, and we are left
with the arbitrary state that we want in the hands of the receiver. We have send 2 classical bits,
shared 1 entangled pair, and have transferred a qubit’s state.

PHYS457 Notes Hersh Kumar
Page 15

We can interfact teleportation with the no-cloning theorem, to derive what is known as the monogamy
of quantum entanglement.

Suppose we have 3 parties, where A and B share a strong correlation, and B shares a strong
correlation with C. If this is true, we can use teleportation protocol we just derived and effectively
create 2 copies of the unknown state that we start with. This is impossible via the no-cloning
theorem, so thus we cannot share entangled pairs like the EPR pair between more than 2 parties.

7 Zeno Effect, Anti-Zeno Effect
7.1 Zeno Effect

Suppose we have a 1 qubit state, |φ⟩ = cos θ |0⟩ − sin θ |1⟩. If we assume that θ is very small, so
sin θ ≈ θ. If we measure the state, we expect that with very high probability we expect to get 0,
since θ is very small, so cos2 θ ≫ θ2, and thus P (0) ≫ P (1).

The Zeno effect, or the watchdog effect, is the case where we have a state very close to one of the
basis vectors. If we then measure, we have a very high probability that we get that vector. Suppose
we have some system drift over time. We can keep our state at that basis vector by repeating that
measurement, which will snap it back to the basis vector. If we look at the state, it doesn’t move.

7.2 Anti-Zeno Effect
We also have the Anti-Zeno effect, where we use the measurement to rotate our state. Say we want
to go from the |0⟩ state to the |1⟩ state, via measurement. This is a strictly quantum method, since
measurement in classical systems does not change the system. Suppose we begin with |0⟩, and
measure in the Hadamard basis. This will get us a 50/50 split between |+⟩ and |−⟩.

We can now do an anti-Zeno measurement, which is where we measure with a slightly rotated basis,
|0⟩ = cos θ |0̂⟩ − sin θ |1̂⟩. We now want to measure |0⟩ in this rotated basis. We see that we will
get |0̂⟩ with probability cos2 θ, and will get |1̂⟩ with probability sin2 θ. We want to maximize the
probability of getting |0̂⟩, so we want to pick our rotation wisely. If we keep θ small, then we have a
high chance of measuring |0̂⟩. This means that with high probability, we have moved the state from
|0⟩ to |0̂⟩. Now repeating this step with a rotated basis from our already rotated basis, we can shift
the state closer to |1⟩ once again. We can repeat this process π

2θ times, and we will have moved the
state |0⟩ to |1⟩.

However, this is not guaranteed, since we have a small chance of having a failed rotation, where we
measure the state |1̂⟩. For each step, we have a cos2 θ chance to succeed, and a sin2 θ change to fail.
We want to find the outcome of succeeding. We see that we have a (cos2 θ)

π
2θ chance of succeeding

every single time (since they are independent events). This isn’t an easy to work with probability,
so we can use the property that Ps = 1 − Pf . The protocol can fail at any one of the steps:

Pf = P (f1 ∪ f2 ∪ f3 ∪ · · · ∪ fn)

Now using the inequality that P (A ∪B) ≤ P (A) + P (B). Using this:

Pf ≤
π
2θ∑

i=1
P (fi) = θ2 π

2θ = π

2 θ

PHYS457 Notes Hersh Kumar
Page 16

Thus the protocol success probability has the relation

Ps ≥ 1 − π

2 θ

Looking at the limit, we see that if θ → 0, then the probability of success goes to 1, but this also
means that the number of iterations goes to ∞.

8 Elitzur-Vaidman Bomb
We are given a box, and we want to know whether or not there is a bomb in it. The only action
that we can take is either open the box, or not open the box.

If we open the box, we will know for sure whether or not there is a bomb, but if there is a bomb, it
will explode.

Classically if we guess while keeping it closed, we have a 50/50 chance of guessing correctly, and if
we open the box, we may blow up the bomb. There is no good way to solve this problem.

We first define a quantum action as an action that can be done in a superposition, such as a
superposition of opening or not opening the box. We set up a qubit |b⟩ in a superposition of |0⟩
(not opening the box) and |1⟩ (open the box):

|b⟩ = α |0⟩ + β |1⟩

This defines some quantum strategy, and the result will be given in another qubit.

We begin in the state |b⟩ |0⟩. If there is no bomb:

|1⟩ |0⟩ → |1⟩ |no explosion⟩

|0⟩ |0⟩ → |0⟩ |no explosion⟩

We see that |b⟩ |0⟩ → |b⟩ |no explosion⟩.

If there is a bomb, we have a different situation:

|0⟩ |0⟩ → |0⟩ |no explosion⟩

|1⟩ |0⟩ → |1⟩ |explosion⟩

This means that if we have an arbitrary superposition for |b⟩:

|b⟩ |0⟩ → α |0⟩ |no explosion⟩ + β |1⟩ |explosion⟩

We have probability |α|2 of no explosion, and probability |β|2 of explosion.

We define our protocol with a rotation operator of ε anti-clockwise:

Rε =
Å

cos ε − sin ε
sin ε cos ε

ã
For the protocol, we initialize |b⟩ to |0⟩. We then rotate this by Rε, and then test the quantum action
|b⟩. We then repeat these last two steps for π

2ε iterations, and then measure |b⟩ in the {|0⟩ , |1⟩}
basis.

PHYS457 Notes Hersh Kumar
Page 17

Let us look at the first case, where this is no bomb. In step 3 of the protocol, we would always have
|b⟩ → |b⟩ |no explosion⟩. Essentially, step 3 does not change anything. At the end of the protocol,
we have that |b⟩ = |1⟩, where the protocol boils down to the Anti-Zeno effect. If we then measure,
the outcome will be |1⟩, with probability of explosion 0.

For the second case, where there is a bomb, we see that the rotation will map |b⟩ to cos ε |0⟩+ sin ε |1⟩.
Now when we test it in step 3, we have a cos2 ε chance of measuring that there is no explosion, and
a sin2 ε change of having the bomb explode. For the same reasoning as for the Anti-Zeno effect, we
have a very small chance of having the bomb explode. We see that in this case, we are left with
|b⟩ = |0⟩ after the rotations, which will not explode the bomb (this is because testing the action will
either blow up the bomb or collapse you to |0⟩, essentially restricting you with very high probability
to |0⟩ if there is a bomb). The probability of the bomb exploding will be given by the same method
we used before:

Pe ≤ π

2εε
2 = π

2 ε

We see that if ε → 0, the probability of the bomb exploding goes to 0, but once again the number
of iterations goes to ∞.

We see that if you measure |1⟩ at the end of the protocol, there is no bomb in the box, and if you
measure |0⟩, there is a very high probability that there is a bomb in the box.

9 Quantum Gates and Circuits
Let us look at some more complicated single qubit gates, elements of C2×2. We often see the Pauli
matrices, which have eigenvalues ±1, and are their own inverses, X2 = Y 2 = Z2 = I.

Since we can think of a qubit as a point on the Bloch Sphere, we can define operations that rotate
the point along the sphere.

Let us talk about functions on Hermitian matrices. Hermitian means that A = A†. Given any
function f : R → R, and a Hermitian matrix A, we want to define f(A) : Cd×d → Cd×d. We have
two equivalent ways to extend these real functions to complex matrices. The first is to get the
spectral decomposition of A, which is guaranteed to be doable since the matrix is Hermitian:

A =
∑

λi |ψi⟩ ⟨ψi|

We know that λi ∈ R, since the matrix A is Hermitian. We define the function to act on the
eigenvalues:

f(A) =
∑

f(λi) |ψi⟩ ⟨ψi|

The second definition is that we assume that the function f is series expandable:

f(x) =
∞∑

i=0
αix

i

We define the function on the matrix as

f(A) =
∞∑

i=0
αiA

i

Where Ai is repeated matrix multiplication with itself, i times.

PHYS457 Notes Hersh Kumar
Page 18

Let us show that these two are the same. Assume we have A with some spectral decomposition:

A =
∑

λi |ψi⟩ ⟨ψi|

We can write out A2:

A2 =
Ä∑

λi |ψi⟩ ⟨ψi|
ä Ä∑

λj |ψj⟩ ⟨ψj |
ä

=
∑

λ2
i |ψi⟩ ⟨ψi|

Where we used the fact that we are in an orthnormal basis. From this, we can see that

An =
∑

λn
i |ψi⟩ ⟨ψi|

Now using the second definition and inserting what we just found:

f(A) =
∞∑

n=0
αnA

n =
∞∑

i=0
αn

∑
λn

i |ψi⟩ ⟨ψi|

Now swapping the summations (which we can do because the series converges), we see that we are
left with ∑

i

f(λi) |ψi⟩ ⟨ψi|

Which is just the definition. We see that the two definitions are equivalent.

9.1 Pauli-Rotation Gates
We can define the gates Rx(θ) = e−i θ

2 X , Ry(θ) = e−i θ
2 Y , and Rz(θ) = e−i θ

2 Z . We have essentially
applied the function f(x) = e−i θ

2 x to each of the Pauli matrices.

Let us look at the properties of these gates. We claim that for any Hermitian, e−iθH is a unitary
matrix.

Proof. Since H is Hermitian, we have that H =
∑
λi |ψi⟩ ⟨ψi|, via spectral decomposition. We can

then write out the application of the exponential:

e−iθH =
∑

e−iθλi |ψi⟩ ⟨ψi|

We see that the coefficients have magnitude 1, so this is unitary, but we can do this out more
rigorously. We know that unitary means that AA† = I:

A =
∑

λi |ψi⟩ ⟨ψi| A† =
∑

λ∗
i |ψi⟩ ⟨ψi|

From this, we have that
AA† =

∑
λiλ

∗
i |ψi⟩ ⟨ψi| = I

This tells us that λiλ
∗
i = 1, so |λi|2 = 1. The eigenvalues must all be of norm 1. Thus we need the

exponential to be of magnitude 1, which it is. Thus we have that e−iθH is unitary.

PHYS457 Notes Hersh Kumar
Page 19

We have defined Rx(θ) = e−i θ
2 X . What does this look like as a matrix? We know that it must be a

2 × 2 matrix. According to the first definition, we can use the spectral decomposition of X:

Rx(θ) = e−i θ
2 |+⟩ ⟨+| + ei θ

2 |−⟩ ⟨−|

This is one way to write it out. We can also do this for Rz:

Rz(θ) = e−i θ
2 |0⟩ ⟨0| + ei θ

2 |1⟩ ⟨1| =
Ç
e−i θ

2 0
0 ei θ

2

å
We can also use definition 2 to find the definitions:

e−i θ
2 X =

∞∑
n=0

(−1)n

n!

Å
−iθ2X

ãn

We can see that we will have different powers of X, and we can use the property that X2 = I, and
then X3 = X5 · · · = X. Now grouping these terms, we see that

e−i θ
2 X =

Ç ∑
n even

(−1)n

n!

Å
−iθ2

ãn
å
I +
Ç∑

n odd

(−1)n

n!

Å
i
θ

2

ãn
å
X

= cos θ2I − i sin θ2X

We can then follow this for the Z matrix, and we find that

e−i θ
2 Z = cos θ2I − i sin θ2Z

=
Ç
e−i θ

2 0
0 ei θ

2

å
We see that the two definitions lead to the same result.

These are called rotation gates because they are rotations on the Bloch Sphere. We can think of
any point on the Bloch sphere as some state

|ψ⟩ = cos φ2 |0⟩ + eiϕ sin φ2 |1⟩

Where φ ∈ (0, π) and ϕ ∈ (0, 2π). An Rz rotation will change the state to

Rz(θ) |ψ⟩ = cos φ2 e
−i θ

2 |0⟩ + eiϕ sin φ2 e
i θ

2 |1⟩

Rewriting this, we can pull out a phase:

= e−i θ
2

[
cos φ2 |0⟩ + ei(ϕ+θ) sin φ2 |1⟩

]
We see that we have changed the phase of the |1⟩ term, which corresponds to a geometric rotation
along the z axis with angle θ.

We can actually do a rotation along any axis, not just the x, y, and z axes. In fact, any 1-qubit
unitary matrix can be considered a rotation along some axis. Suppose we define some axis given by
the vector n⃗ = (nx, ny, nz), where n2

x + n2
y + n2

z = 1. We can define the arbitrary rotation:

Rn⃗(θ) = e−i θ
2 (nxX+nyY +nzZ) = e−i θ

2 n⃗·σ⃗

where σ⃗ = (X,Y, Z). This is doable because (nxX + nyY + nzZ)2 = I.

PHYS457 Notes Hersh Kumar
Page 20

9.2 General 1-qubit Unitary Gates
Theorem 9.1. Any 1-qubit unitary operation can be decomposed as a series of rotations:

G = eiϕRz(θ3)Rx(θ2)Rz(θ1)

As long as the θs can be arbitrary.

The second version of the theorem is stronger, which is that we can use any two arbitrary rotations
along the axes n⃗1 and n⃗2, so long as they are non-parallel.

The implication of this theorem is that it suffices to perform any rotation any over two non-parallel
axes (with any angle), and this allows for the creation of any 1-qubit gate (up to a global phase).

9.3 Universality
We have talked about the CNOT, but let us highlight one of its properties, the fact that it is an
entangling gate. Applying CNOT to a product state can result into an entangled state:

CNOT |+⟩ |0⟩ = 1√
2

(|00⟩ + |11⟩)

Physically speaking, some other gates are easier to implement than a CNOT, but CNOT is the
simplest entangling gate.

Theorem 9.2. If we have a universal gate set for 1 qubit, and we add entangling gates, this forms
a universal set for general quantum computation.

One tip for dealing with the CNOT is that we can write it out in Dirac notation:

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X

In general, if we have a general controlled unitary:

C-U = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U

If we are given a set of gates, how can we determine whether it is universal for quantum computation?

Let us do the example, of just Toffoli gates. This is not universal, because we don’t have something
that can generate a phase flip, like a Z gate. The Toffoli can only generate bit flips. We cannot
implement any unitary U that has imaginary numbers in it.

Looking at the set {CNOT, X, Y, Z}, we see that there are angles of arbitrary rotations that we
cannot access using just combinations of X, Y , and Z, and thus the gate set is not universal.

The set {CNOT, H, T}, where T = ei π
8

Ç
e−i π

8 0
0 ei π

8

å
. This is universal, as H and T will allow

for an arbitrary rotation along the Bloch Sphere (HTHT and THTH give rotations by irrational
multiples of π over two non-parallel axes), and we have added in the CNOT gate.

PHYS457 Notes Hersh Kumar
Page 21

9.4 Efficiency of Approximating General Functions
Suppose we have some function f : {0, 1}n → {0, 1}, and we want to find how large our implemen-
tation of this will be using our gateset. To do this, we can convert this to a counting problem,
thinking about how many functions there are that map from n bits to 1 bit. We can think of how
many different truth tables we can generate with n inputs and 1 output bit. We have 2n inputs,
with 2 choices for each input. This gives 22n different boolean functions. This is double exponential,
this is massive.

We define an efficient circuit as one of polynomial length. This will roughly be an exponential of
some polynomial of n. This means that for most classical boolean functions, we don’t have an
efficient polynomial implementation. We can then carry this argument over to quantum circuits.

9.4.1 Approximation of Unitary Gates

We must first define the definition of approximating a unitary gate. We must first define some metric
of distance between the ideal gate and the approximation. The idea of distance in a matrix space is
not very intuitive, so this is difficult. If we think of two vectors, we can define a metric/distance
between the two, which is the natural metric of Euclidean distance:

∥ |ψ⟩ − |ϕ⟩ ∥2

We define this on some arbitrary vector:

∥ |ψ⟩ ∥2 =
»

⟨ψ|ψ⟩

We see that the metric is just a special case where we take the norm of the difference of vectors:

∥ |ψ⟩ − |ϕ⟩ ∥2 =
»

(⟨ψ| − ⟨ϕ|)(|ψ⟩ − |ϕ⟩) =
»

2 − 2Re ⟨ϕ|ψ⟩

Where we have assumed that the two vectors are unit vectors. This can also be written as

=
»

2 − 2∥ |ϕ⟩ ∥ ∥ |ψ⟩ ∥ cos θ

We can bound this value, we know it must be greater than equal to 0, since its a real value and we
have a square root, and we know that the maximal possible case is 2:

0 ≤ ∥ |ψ⟩ − |ϕ⟩ ∥2 ≤ 2

If the two vectors are the same, this is 0, and if the two are opposites, we have 2. We see that we
can use this as a distance metric for two vectors.

It is also noted that this satisfies the triangle inequality:

∥ |ψ⟩ − |ϕ⟩ ∥2 ≤ ∥ |ψ⟩ − |φ⟩ ∥2 + ∥ |φ⟩ − |ϕ⟩ ∥2

We can now apply this metric to matrices. Suppose we have two unitary matrices U and V :

E(U, V) = max∥U |ψ⟩ − V |ψ⟩ ∥2

for all inputs |ψ⟩. Essentially, we find an input that will maximize the distance between the
application of the unitaries on the input, and that maximized distance is the distance between the
unitaries.

PHYS457 Notes Hersh Kumar
Page 22

Let us do an example of distance between matrices. Suppose we want to find the distance between
the X and I matrices, E(X, I). If we plug in |ψ⟩ = |−⟩, we see that we will get − |−⟩, which is
opposite to the initial |ψ⟩. This will get us a norm of 2, which is the maximum possible.

We can also apply the Triangle Inequality to the matrix distance:

E(U, V) ≤ E(U,W) + E(W,V)

Proof. The left side will be
max∥U |ψ⟩ − V |ψ⟩ ∥2

We know that the Triangle Inequality holds for the inside of the norm. If we now insert a net
nothing inside:

max∥U |ψ⟩ − V |ψ⟩ ∥2 = max∥U |ψ⟩ − V |ψ⟩ +W |ψ⟩ −W |ψ⟩ ∥2

We can now group terms, and we see that we can upper bound the norm:

max∥U |ψ⟩ − V |ψ⟩ ∥2 ≤ max [∥U |ψ⟩ −W |ψ⟩ ∥2 + ∥W |ψ⟩ − V |ψ⟩ ∥2]

Now we use the fact that the max of a sum is the sum of the maxes:

max∥U |ψ⟩ − V |ψ⟩ ∥2 ≤ max∥U |ψ⟩ −W |ψ⟩ ∥2 + max∥W |ψ⟩ − V |ψ⟩ ∥2

We see that we have proven the Triangle Inquality, and thus our metric is indeed a distance.

We also have another very useful property. Suppose we have two circuits, each with two gates, U2U1
and V2V1. Suppose we now want to find the distance between the two circuits. It is indeed true that

E(U2U1, V2V1) ≤ E(U1, V1) + E(U2, V2)

Proof. We create an intermediate unitary between U2U1 and V2V1, such as U2V1. We now use the
Triangle Inequality:

E(U2U1, V2V1) ≤ E(U2U1, U2V1) + E(U2V1, V2V1)
Looking at the first term, we see that this is

max∥U2U1 |ψ⟩ − U2V1 |ψ⟩ ∥2

We now use the property of Euclidean vectors that rotation does not change the magnitude, letting
us factor:

= max∥U2(U1 |ψ⟩ − V1 |ψ⟩)∥2

We can now remove the U2, since it is an overall rotation, so we see that we are left with E(U1, V1).

Expanding the second term:
max∥U2V1 |ψ⟩ − V2V1 |ψ⟩ ∥2

= max∥(U2 − V2)V1 |ψ⟩ ∥2

where we have used the fact that the input vectors are the same, and the first unitary is always the
same. Thus, we can think of this as a change of variables, and change this to a maximum varying
V1 |ψ⟩, which then leaves us with E(U2, V2). Thus we have that

E(U2U1, V2V1) ≤ E(U1, V1) + E(U2, V2)

PHYS457 Notes Hersh Kumar
Page 23

Let us now think about how we use this. Suppose we have a general distance between two circuits:

E(UnUn−1 . . . U1, VnVn−1 . . . V1) ≤
n∑

i=1
E(Ui, Vi)

We see that we have created some upper bound on the distance between two circuits.

9.4.2 Solovay-Kitaev Theorem

The motivation for this theorem is that for some unitary U , we can approximate this using gates
from some universal gate set. The question is, do the number of required gates from different
universal gate sets different by a lot?

If we have two gate sets, and the first uses p gates for implementing U , and the second uses p′ gates,
we don’t want p and p′ to be very different from each other. The Solovay-Kitaev theorem says that
the universal gate sets do not take very different amounts of gates.

Theorem 9.3. With any fixed universal set of single-qubit gates that is closed under the inverse (If
G is in the set, then so is G†), any single-qubit gate can be approximated with error at most ε, with
the number of gates ≤ poly

(
log

(1
ε

))
.

We can apply this theorem. Consider using gate set 1, a circuit takes m gates, with error ε. Now
suppose we wanted to use gate set 2. For each gate in gate set 1, up to error ε′, we have a way
to construct the gate in less than poly

(
log 1

ε′
)
. Suppose we want the error to be ε′ = ε

m (equally
distributing the original error by the number of gates), which would mean that we would have a
number of gates bounded by

m× poly
(

log m
ε

)
In complexity theory, this overhead is considered small, no matter what gate set we use, this doesn’t
cause much of a difference.

10 Quantum Algorithms
10.1 Query Model

We want to first talk about a model known as the Query Model. Suppose we have a boolean function
f = {0, 1}n → {0, 1}, but we don’t have access to the description of the function.

We want to learn about the function only through oracle queries of f , which is when we send the
oracle x as input of the function, and the oracle tells us the output of the function, f(x). Essentially,
we have the function in a box that we cannot access, but we can ask it what the output for a given
input is.

We can generate an adaptive algorithm, which uses the input/output pairs from the oracle to get
some output of the algorithm.

Let us look at this query model in the quantum setting. The first step is to construct an oracle that
is reversible, since we need that for quantum computation. We have some n bit to 1 bit function,
and we want to construct some circuit for Uf , which acts on n + 1 qubits. We have n qubits of
input |x⟩, and one output qubit |y⟩, and after passing this to the oracle, this keeps the inputs the
same, and modifies |y⟩ to be |y ⊕ f(x)⟩.

PHYS457 Notes Hersh Kumar
Page 24

We can also extend this reversible oracle to any number of output bits. Suppose the function takes
in n bits of input and m bits of output. We can make |y⟩ m qubits, and then return the bitwise
XOR, |y ⊕ f(x)⟩.

10.2 Deutsch Algorithm
Imagine we have a 1 bit to 1 bit function f : {0, 1} → {0, 1}. This function is either a constant
function, f(0) = f(1), or a balanced function, f(0) ̸= f(1). How many queries do we need to find
whether this is a constant function or a balanced function? Classically, we need 2 queries, f(0) and
f(1).

If we do this using quantum computation, we will see that we only need to apply this oracle 1
time, and we will perfectly distinguish between constant and balanced functions. This is the first
separation found between quantum and classical computation in the query model, although the
separation is not that large.

10.2.1 Phase Kickback

This is a method in which we can turn our standard oracle Uf : |x, y⟩ → |x, y ⊕ f(x)⟩, where we
have stored the information into the computational basis, into another oracle, known as the phase
oracle. We construct this via

|x⟩ → (−1)f(x) |x⟩

We store the information in the phase.

Suppose we choose |y⟩ = |−⟩ = 1√
2(|0⟩ + |1⟩). In this case, acting with the standard oracle gets

Uf |x,−⟩ = Uf |x⟩ 1√
2

(|0⟩ + |1⟩)

= 1√
2

|x⟩ (|0 ⊕ f(x)⟩ − |1 ⊕ f(x)⟩)

Note that this is indeed consistent, as when we choose f(x) = 0, we see that this leaves the state
unchanged. If we choose f(x) = 1, we see that we are left with − |x⟩ |−⟩, and we have stored the
information (−1)f(x) = −1 in the phase, and the value of |y⟩ has been left unchanged.

This is the phase oracle, and this property is known as phase kickback. We can use this phase oracle
to create our first algorithm. We have the circuit

|0⟩ H
Uf

H

|1⟩ H

We can break this down into chunks. The first Hadamard transforms the first qubit’s state to

|ψ1⟩ = H |0⟩ = 1√
2

(|0⟩ + |1⟩)

The unitary will then leave the state as

|ψ2⟩ = 1√
2

Ä
(−1)f(0) |0⟩ + (−1)f(1) |1⟩

ä

PHYS457 Notes Hersh Kumar
Page 25

When we have a constant f , f(0) = f(1):

|ψ2⟩ = (−1)f(0) 1√
2

(|0⟩ + |1⟩)

The last H gate will then transform this to

|ψ3⟩ (−1)f(0) |0⟩

When we have a balanced function f , f(0) ̸= f(1):

|ψ2⟩ = (−1)f(0) 1√
2

(|0⟩ − |1⟩)

And the Hadamard will leave us with

|ψ3⟩ = (−1)f(0) |1⟩

We see that if the function is balanced, we will get 1, and if it is constant, we will get 0, with 100%
certainty.

10.3 Deutsch-Josza Algorithm
This is a generalization of the previous algorithm, where we have some function

f : {0, 1}n → {0, 1}

Now we have functions that are neither balanced or constant. Recall that f(x) is constant if
∀xf(x) = f(0), and a function is balanced when the number of 0’s as output is the same as the
number of 1’s.

Thinking classically, the best complexity that we can attain is O
(2n

2 + 1
)
. This is checking half of

the inputs plus another 1 input to determine whether it is balanced or not.

If we have a randomized algorithm, where we sample n inputs x1, x2, . . . , xm, and we check each of
the outputs. If those only contain 1 values, we will guess that it is constant, and if contains 2 values,
we say that it is balanced. This will always work for the constant case, but will have a chance to be
wrong for the balanced case. For example, suppose we sample k items, and they are all outputs of
0, when half of the outputs are 1. We can compute the failure probability when f is balanced:

Pf = 2 × 1
2k

Where the 2 comes from sampling from either the outputs that are 0 or the outputs that are 1.

The difference between the Deutsch algorithm and the Deutsch Josza algorithm is that we have n
bits of input, rather than just 1. We simply duplicate what we did to the first qubit in the Deutsch
algorithm, and extend the unitary to an n+ 1 bit unitary gate.

To run through the state of the circuit, after the first set of H gates:

H⊗n |0⟩⊗n = |+⟩⊗n

PHYS457 Notes Hersh Kumar
Page 26

Now replacing |+⟩ with
∑

z∈{0,1}
1√
2 |z⟩:

|+⟩⊗n =

Ñ ∑
x1∈{0,1}

1√
2

|x1⟩

é
⊗ · · · ⊗

Ñ ∑
xn∈{0,1}

1√
2

|xn⟩

é
Now using the properties of sums:

=
∑

x1,x2,x3,...xn

1√
2n |x1⟩ |x2⟩ |x3⟩ . . . |xn⟩

Now we can notice that this is an equal superposition, so this is the same as a length n bitstring:

= 1√
2n

∑
x∈{0,1}n

|x⟩

In the second step, we will pass through the phase oracle:
1√
2n

∑
x∈{0,1}n

(−1)f(x) |x⟩

The third step is the second set of Hadamard gates:
1√
2n

∑
x∈{0,1}n

(−1)f(x)H⊗n |x⟩

We can use the fact that
H |x⟩ = 1√

2
∑

z∈{0,1}
(−1)z·x |z⟩

Now using this to apply H⊗n:

H⊗n |x⟩ = (H |x1⟩) ⊗ (H |x2⟩) ⊗ · · · ⊗ (H |xn⟩)

=

Ñ
1√
2

∑
z1∈{0,1}

(−1)z1·x1 |z1⟩

é
⊗

Ñ
1√
2

∑
z2∈{0,1}

(−1)z2·x2 |z2⟩

é
⊗ · · · ⊗

Ñ
1√
2

∑
zn∈{0,1}

(−1)zn·xn |zn⟩

é
Once again using the properties of sums:

=
∑

z1,z2,...,zn

1√
2n · (−1)z1·x1+z2·x2+...zn·xn |z1z2 . . . zn⟩

Now we once again note that z = (z1, z2, . . . zn) ∈ {0, 1}n, it is an n-bit string, and we finally have
the closed form expression for the Hadamard on a bit string.

H⊗n |x⟩ =
∑

z

1√
2n (−1)z·x |z⟩

Now applying this to the state of the system after the unitary:
1√
2n

∑
x

(−1)f(x) ∑
z

1√
2n (−1)z·x |z⟩ = 1

2n

∑
z

Ç∑
x

(−1)f(x)+z·x
å

|x⟩

Now note that if the function is constant, the phase term on the state will be
∣∣∣∑x(−1)f(x)

∣∣∣ = 2n. If
it is constant, we only see the all 0 state.

If f(x) is balanced, then |
∑

x(−1)f(x)| = 0, since exactly half will have opposite phase to the other
half. We will never see the |00 . . . 00⟩ in the measurement. This gets us our algorithm.

PHYS457 Notes Hersh Kumar
Page 27

10.4 Simon’s Algorithm
We have seen that in Deutsch’s algorithm, we had a classical query complexity of 2, and a quantum
complexity of 1, a small but tangible speedup. We then extended this to the Deutsch-Josza algorithm,
which had a classical complexity of O(2n), and a quantum query complexity of 1. Now we will
see something that once again provides a speedup, but one where we can draw parallels to Shor’s
algorithm, as well as show a nontrivial quantum solution.

We begin with the problem of having a function f : {0, 1}n → {0, 1}n. We have a promise, where
there is some hidden string s ∈ {0, 1}n, and f(x) = f(y) iff x⊕ y{0n, s}, iff y = x⊕ s.

The task is to find s using queries to the oracle for f .

Let us look at classical algorithms for this. Intuitively, the best thing that we can think of is to test
a bunch of inputs and hope we get repeated outputs. If we have no collision, we gain no information.
If there is a collision, we know that we have x,y, such that f(x) = f(y). Our promise tells us that
y = x⊕ s. This is enough information to find s:

x⊕ y = x⊕ (x⊕ s) = (x⊕ x) ⊕ s = 0n ⊕ s = s

The question is, how many inputs do we need to test? In the deterministic case, the complexity is
O(2n), since we need to query 2n

2 + 1 inputs.

In the randomized case, we pick random inputs, and want to see how many we have to query until we
reach a reasonable probability for collision. This is an example of a well-known case in probability,
the birthday paradox, which tells us that it will take on the order of

√
2n for it to be likely that we

get the collision. Note that this makes the probability of collision to be more than 3
4 . If we instead

do this c times, on the order of O(c
√

2n), we would have a failure probability of 1
4c . We see that

without much overhead, we can make this as small as we want.

We can now move to the quantum case. This algorithm requires some classical post-processing
methods. The circuit takes the form

|0⟩ /n
H⊗n

Uf

H⊗n

|0⟩ /n

We can analyze what the circuit will do, step by step. The first set of Hadamard gates puts us into
the state

The second step passes us into the oracle, which gives us

1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩

We now measure the output bits, and get the bitstring l. We have two cases. If s = 0n, we will have
that the input bits will be some input xl, such that f(xl) = l. In the second case, we have that
s ̸= 0n, and thus the input bits are in the state 1√

2(|xl⟩ + |xl ⊕ s⟩).

We now do the Hadamard on the inputs. In the first case, when we apply the Hadamard to the
state |xl⟩, we will have

1√
2n

∑
j∈{0,1}n

(−1)x·j mod 2 |j⟩

PHYS457 Notes Hersh Kumar
Page 28

This is an equal superposition, because these amplitudes can never cancel, we can measure any j.
Since s = 0n, no matter what we measure, say y, y ⊕ s = y ⊕ 0n = 0n.

In the second case, where s ̸= 0n:
1√
2

(|xl⟩ + |xl ⊕ s⟩) → 1√
2

1√
2n

∑
j∈{0,1}n

î
(−1)x·j mod 2 + (−1)(x⊕s)·j mod 2

ó
|j⟩

Looking at the amplitudes:

(−1)x·j mod 2 + (−1)x·j mod 2+s·j mod 2

Where we have used that the dot product is distributive over ⊕.

= (−1)x·j mod 2
î
1 + (−1)s·j mod 2

ó
The only time the amplitude of |j⟩ is nonzero is when s · j mod 2 = 0. On the other hand, if
s · j mod 2 = 1, we can compute that we will have 0 amplitude. If we measure some string y, we
know that s · y mod 2 = 0, because all strings that do not satisfy this case have zero amplitude.

Our claim is that any measurement y is such that s = 0n, and y is a uniformly distributed string, or
s ̸= 0n, and y is a string chosen uniformly randomly from strings such that s · y mod 2 = 0. Note
that this means that no matter what we measure, s · y mod 2 = 0.

Let us now move on to our classical post-processing. Our quantum part gives us some uniform y
such that s · y mod 2 = 0. This does not uniquely determine a string s. However, we note that this
is a linear equation of n variables:

s1y1 + s2y2 + · · · + snyn = 0

If our quantum routine returns y(1), y(2), y(3), y(4), . . . y(n), all of which are linearly independent,
then we have a set of n equations s · y(i) mod 2 = 0. This set of equations can be solved for s. How
many times do we need to run the quantum routine? Suppose we run it n times. What is the
probability that we have a correct set of equations?

For y(1), the first string we get, the probability of it being “good” is 1 − 1
2n , where we have noted

that we don’t want to get 0n. For the second round, our bad case is that y(2) = ay(1), but since we
have bitstrings, a = 0, 1. Thus we have 2 bad cases, giving us P2 = 1 − 2

2n .

For y(k), the bad case is that y(k) = a1y
(1) + a2y

(2) + . . . ak−1y
(k−1). We see that there are 2k−1 bad

cases, giving a probability of a good case being Pk = 1 − 2k−1

2n . This is the general probability of
getting a good new equation for the kth run.

Say we run n rounds. The probability of n good equations is

Psuccess =
n∏

m=1

Å
1 − 2m−1

2n

ã
This is a well-known expression, and is approximately 0.288. This is greater than 1

4 . Just like in the
birthday paradox, if we repeated this 4c times, we could make the failure probabilityÅ

1 − 1
4

ã4c

≈ e−c

We see that making 4cn quantum queries in total, we can obtain s with probability ≥ 1 − e−c.
This is linear in the number of queries. Recall that the classical random method gave a solution of
O(

√
2n), and quantum gave us a complexity of O(n).

PHYS457 Notes Hersh Kumar
Page 29

10.5 Grover’s Algorithm
We are given some function f : {0, 1}n → {0, 1}. This is sometimes known as an indicator, it
indicates whether the entry has some property. For example, suppose the input represents an
image, and the indicator returns whether or not the image has a person in it. Grover’s algorithm
is essentially searching through an unstructured database. We say unstructured because we don’t
assume anything about the structure of f , we do it all via queries. The goal is to find an input
x ∈ {0, 1}n such that f(x) = 1, if it exists. Otherwise, we want to output that there is no such x.

The classical solution for this problem is to query every single input until we either find x or find
that x does not exist. However, we can do better than this. Suppose B is the set of solutions,
B = {x ∈ {0, 1}n|f(x) = 1}. If |B| is large, then the problem should be easy, we can pick randomly
and hope we get something in B. The strategy is to sample x ∈ {0, 1}n, and we know the probability
that this will return f(x) = 1:

P (Solution) = |B|
2n

If we keep trying uniformly random samples, and checking whether they are solutions, what is the
expected number of trials before we can observe an input that is a solution with probability 0.99?

Let I be the indicator for the ith trial. If this is 1, then the ith trial succeeded, and if it is 0, the
trial failed. We have

I1, I2, . . . , Im

for a run of m trials. We want to calculate the expectation of the sum of the indicator outputs. If
this sum is 0, then none of the trials succeeded. If the sum is nonzero, then we succeeded somewhere.
Due to the linearity of the expectation, we have that

E[I1 + I2 + I3 + · · · + Im] = mE[I1] = m[1p+ 0(1 − p)] = mP

Where P is the success probability we computed earlier. We have that this expectation value must
be at least .99:

mP ≥ .99

From this, we can find the number of trials m that we will need, in terms of our solution set, and
we find that the classical solution is Θ(2n).

Now let us look at the quantum setting. We will find that the algorithm is Θ
Ä

1√
P

ä
, and recall

that P can be as small as 1
2n . From this we have that O(

√
2n). We will later see that we can also

derive that the solution is Ω(
√

2n), giving us a total Θ(
√

2n). We will find that we have a generic
quadratic speedup over classical computation. Grover’s algorithm is a quantum random walk, also
known as a MCMC (Markov Chain Monte Carlo) algorithm. This can be generalized to a lot of
different types of quantum algorithms. The limitation is that these speedups are only going to be
polynomial when using Grover’s algorithm. In order to get superpolynomial speedup, we need to
exploit the structure of the problem, which Grover’s algorithm ignores.

Let us recap on the setting of the problem. We have an indicator function f : {0, 1}n → {0, 1}.
We have an oracle Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩. Recall that we can also make a phase oracle via
Uf |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩.

Grover noted that the phase oracle cannot distinguish between different solutions, because it only
knows that f(x) = 1, not anything about x itself. The whole search space is divided into two sets,

PHYS457 Notes Hersh Kumar
Page 30

inputs that return 0 and inputs that return 1. The algorithm cannot distinguish any further than
that. This allows us to analyze the whole algorithm in a 2 dimensional subspace. We have two sets:

A = {x|f(x) = 0} B = {x|f(x) = 1}

We can now define a state
|xA⟩ = 1√

|A|
∑
x∈A

|x⟩

This is the normalized, equal superposition of all inputs that return 0. We can also generate |xB⟩:

|xB⟩ = 1√
|B|

∑
x∈B

|x⟩

Note that |xA⟩ and |xB⟩ are orthogonal to each other, since A and B are disjoint sets. From this,
we see that xA and xB generate a 2 dimensional space. We can note the effect of the phase oracle
on |xA⟩:

Uf |xA⟩ |−⟩ = |xA⟩ |−⟩

and on |xB⟩:
Uf |xB⟩ |−⟩ = (−1) |xB⟩ |−⟩

Suppose we plot two axes, one being |xA⟩ and the other being |xB⟩. Imagine we have some arbitrary
state on this plot, |ψ⟩:

|ψ⟩ = cos θ |xA⟩ + sin θ |xB⟩

If we apply the phase oracle (dropping the |−⟩ and calling the phase oracle Of):

Of |ψ⟩ = cos θ |xA⟩ − sin θ |xB⟩ = cos(−θ) |xA⟩ + sin(−θ) |xB⟩

Geometrically, we see that applying the phase oracle reflects the vector with respect to |xA⟩, it
rotates by θ the opposite direction. This is the first important tool that we will use.

Suppose we start with a state that is an equal superposition of all states:

|ϕ⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ =

|A|
2n

|xA⟩ +

|B|
2n

|xB⟩ = cos θ0 |xA⟩ + sin θ0 |xB⟩

Our target for the algorithm is to find |xB⟩, a superposition of states that are solutions. We begin
with the state |ϕ⟩ that is very close to |xA⟩. What we will do is a reflection across |ϕ⟩, to get a
state closer to |xB⟩. Suppose we have some state |ψ⟩, and we do a reflection across |ϕ⟩ (We have
not defined this reflection yet, we are assuming that we can do it) called R|ϕ⟩, we will end with a
state closer to |xB⟩. Suppose |ψ⟩ is defined by the angle φ. Then the angle between the reflected
state and |ϕ⟩ will be φ+ 2θ0. This is the second useful tool.

Now let us put the two tools together. Suppose we have some state |ψ⟩. We do the first step, which
is to use the phase oracle to reflect across the |xA⟩ axis. We then apply the R|ϕ⟩ operation, and we
end with some |ψ2⟩ state, which has angle φ+ 2θ0. Essentially:

|ψ0⟩ → Of → |ψ1⟩ → R|ϕ⟩ → |ψ2⟩

We have moved the state from something that is close to |xA⟩ to something that is closer to |xB⟩,
by 2θ0. We need to repeat this whole process until we move roughly π

2 . If we start in the state

PHYS457 Notes Hersh Kumar
Page 31

φ0 = θ0, and each iteration increases the angle by 2θ0, then the number of iterations that we will
need is roughly:

(2m+ 1)θ0 ≈ π

2 → m ≈ π

4θ0

If we assume that |B| is very small, then sin θ0 is also small. This means that θ0 ≈
»

|B|
2n . This

inner portion is what we previously defined as P ! This tells us that θ0 ≈
√
P . Now inserting this

into m, we have that m ≈ π
4
√

P
. Let us walk through the algorithm and count the number of queries.

For each step, we have 1 query to the phase oracle, and we will see that in order to do the reflection
R|ϕ⟩, we need no information about f , and thus we require no addition queries. We can explicitly
define this reflection:

R|ϕ⟩ = |ϕ⟩ ⟨ϕ| −
∑

|ϕ⊥⟩ ⟨ϕ⊥|

The first term keeps everything in the direction of |ϕ⟩ the same, and changes the sign of everything in
the orthogonal direction. We use a sum in the orthogonal term because this is in a higher dimension.
We can rewrite this by using the fact that |ϕ⟩ ⟨ϕ| +

∑
|ϕ⊥⟩ ⟨ϕ⊥| = I. Inserting this, we have that

R|ϕ⟩ = 2 |ϕ⟩ ⟨ϕ| − I

Now rewriting this by using how we find |ϕ⟩:

R|ϕ⟩ = 2H⊗n |0⟩ ⟨0|H⊗n − I = H⊗n(2 |0⟩ ⟨0| − I)H⊗n

Let us cap this off with a general pseudocode look at Grover’s Algorithm. We begin by initializing
|ϕ0⟩ via H⊗n |0⟩. We then reflect the state using Of , and then reflect the state using R|ϕ⟩. We then
repeat these two steps m times. The final state will have angle (2m+ 1)θ0 as the angle between the
final state and the |xA⟩ axis. The complexity will be roughly π

4
√

P
. This can be compared to the

classical complexity of 1
P .

Now note that in the case where B is empty, then this whole thing breaks down. However, if we
assume that B is nonempty, we can run the algorithm and then check our measured output using
the oracle.

Grover’s algorithm does have some issues. Since we don’t know p initially, we might overshoot the
solution axis. To solve this, we can use an algorithm known as quantum counting, which tells us
what P is, at the cost of O(

√
2n). This will let us prevent overshooting.

The other solution is an algorithm known as fixed-point Grover, which we will not cover, but
essentially it guarantees that we will always get a rotation to a better state, meaning that overshooting
is never a problem.

10.5.1 Lower Bounding Grover’s Algorithm

Now we need to figure out what the lower bound for Grover’s algorithm is. We guess that it is
Ω(

√
2n), and it will turn out to be true.

One technique that we use classically for lower bounding is decision trees. Suppose we are given an
array A[n] of n elements, and we want to sort the array. We have an operation that we can perform,
which is comparing A[i] and A[j]. This can be thought of as being a sort of oracle. The question is,
how many operations are necessary to sort the array A[n]?

PHYS457 Notes Hersh Kumar
Page 32

Suppose we use mergesort, and we have an O(n logn) sorting time. Now we want to prove that
Ω(n logn) as well. Decision trees are an abstraction of what the algorithm does. We begin with a
root, which is the comparison between i0 and j0. This node has two children, the child where the
operation returned that i0 was larger, and the child where the operation returned that j0 is larger.
Now at each node, we do another operation, asking a different query. Each node will branch into
two children. If we do this for a certain number of queries, the depth of the tree corresponds to the
number of operations/queries. Each leaf node will correspond to an output of the algorithm. If
our algorithm is correct, we expect the number of leaf nodes to be at least the number of possible
correct outputs. In the sorting case, we have n! inputs, so we 2noperations ≥ n!, which tells us that
noperations ≥ log(n!) ≈ O(n logn), where we have used the Stirling Approximation.

Suppose the problem is that we have an array A[n], nd we want to find the maximum A[i∗]. Our
operation is random access to an element in the array. The upper bound is that we query all n
elements, nops ≤ n. Intuitively, we think that this cannot be done in n− 1 queries, but how do we
turn this into a mathematical proof? We want to prove that the lower bound is nops ≥ n. We can
use something known as the Adversarial Method.

This method assumes that there exists a way to take an algorithm and find a bad input for the
algorithm via interaction with the algorithm. Assume there is an algorithm that can find the
maximum using n− 1 operations. If we run this algorithm, and at the first step, we query some i1,
the adversary sets A[i1] = 1. The algorithm will then query some i2, the adversary sets A[i2] = 2. We
repeat this process, until the algorithm queries some in−1, and the adversary then sets A[in−1] = n−1.
We note that the algorithm must either return the maximum of {A[i1], A[i2], . . . A[in−1]}, or A[in].
We also note that in /∈ {i1, i2, . . . in−1}. If the algorithm chooses to return the maximum of the
queried terms, the adversary then picks A[in] = n, which makes it the correct answer for the problem,
making the algorithm wrong. On the other hand, if the algorithm choose in, the adversary can
choose A[in] = 0, making it the wrong answer. Thus we have seen that we can construct an input
for the problem that makes it impossible to solve the problem in n− 1 queries.

We have see that to prove the lower bound for something, we have to first model the general
algorithm. We then need to identify the hard instance or input.

We now need to model the general quantum algorithm with oracles. We have an oracle Of |x⟩ |y⟩ =
|x⟩ |y ⊕ f(x)⟩. Let us first restrict ourselves to quantum circuits. This is a big assumption that we
are making without any loss of generality. We can now model any circuit, by having 3 sections of
inputs. We have n qubits of input, representing x ∈ {0, 1}n. We then have a single qubit representing
y ∈ {0, 1}. We then have some polynomial in n number of workspace qubits. We assume that we
begin with the application of some unitary V1 onto all the qubits. We then apply the oracle to |x⟩
and |y⟩, and then apply some other global unitary V2. We then repeat this n times, noting that we
are applying the oracle n times.

Now what is a hard instance for Grover’s algorithm. First let us look at our input cases. the first
case is that ∀x , f(x) = 0. In this case, we have that Of = I.

Another case is that there exists a unique x̃ such that f(x̃) = 1, andf(x) = 0 for all x ≠ x̃. In this
case, all algorithms for this problem need to output |ψx̃⟩ . The oracle function is no longer trivial,
there are 2n different possible values for x̃, so we have 2n different oracle functions.

Let us look at the difference between the final state for the case of the all 0 function (|ψ⟩) and the

PHYS457 Notes Hersh Kumar
Page 33

case with a single input being 1 (|ψx̃⟩).∑
x̃

∥|ψ⟩ − |ψx̃⟩∥ ≥ Ω(2n)

Suppose have the initial state |ψ(0)⟩ for our algorithms. For each query, we have that in the first
case, with Of = I:

|ψ(i)⟩ = (I ⊗ I)Vi |ψ(i−1)⟩

And for the second case:
|ψ(i)

x̃ ⟩ = (Of ⊗ I)Vi |ψ(i−1)
x̃ ⟩

Our goal is to bound ∥|ψ(i)⟩ − |ψ(i)
x̃ ⟩∥ for x̃. We claim that this is ≤

∑T
i=1 2

√
Pr[ith query is x̃].

Putting things together, we have

c · 2n ≤
∑

x̃

∥|ψ(i)⟩ − |ψ(i)
x̃ ⟩∥

Now substituting in:

c · 2n ≤
∑

x̃

T∑
i=1

2
»

Pr[ith query is x̃]

Now using Cauchy-Schwarz:

= 2
T∑

i=1

∑
x̃

»
Pr[ith query is x̃]

This inner sum is ≤
√

2n, which gives us that

= 2
T∑

i=1

√
2n = 2T

√
2n

Now putting the left side back:

2T
√

2n ≥ c · 2n → T ≥ Ω(
√

2n)

10.6 Shor’s Algorithm
We begin by talking about a subproblem that was initially developed along with Shor’s algorithm,
but is used widely elsewhere, and so it is it’s own algorithm, quantum phase estimation.

10.6.1 Quantum Phase Estimation

Quantum phase estimation has a fully quantum problem statement. We are given a controlled
unitary U , and we are given an eigenstate of the unitary |ψ⟩, with some eigenvalue ei2πθ, for some
θ ∈ [0, 1]. This comes from the definition of the eigenvalues of a unitary matrix. The output of
the problem is an approximation of θ, θ̃ ∈ [0, 1]. We represent the real number between 0 and 1 in
binary:

θ̃ = 0.θ1θ2θ3 . . .

Where θ1 carries the weight of 1
2 , θ2 carries the weight 1

4 , etc.

We hope that |θ̃ − θ| < ε, for small ε, we want them to be close to each other.

PHYS457 Notes Hersh Kumar
Page 34

Let us first look at the case where θ = 0.θ1, where θ is either ei2π×0 or ei2π×1/2, giving us an
eigenvalue of either 1 or −1. In the case where the eigenvalue is 1, we have that U |ψ⟩ = |ψ⟩, and in
the case where the eigenvalue is −1, we have U |ψ⟩ = − |ψ⟩. This is something that we have seen
before (on the homework), with a slight modification:

|0⟩ H • H X

|ψ⟩ U

Now we want to generalize this to θ = 0.θ1θ2 . . . :

Note that we need two new things, a multi-qubit controlled unitary, and a QFT gate, the Quantum
Fourier Transform. Let us first generate the multi-qubit controlled unitary. We have our start state:

|x⟩ |ψ⟩

Where |x⟩ ∈ {0, 1}n, and we can think of |x⟩ as representing a binary representation of an integer.
We can think of this as applying the unitary x times:

|x⟩ |ψ⟩ → |x⟩Ux |ψ⟩

Constructing this is not trivial, and it turns out that the worst case cost of this gate is exponential
in n, the number of control bits. This is bad, but this is the worst case. The unitary inside Shor’s
algorithm is special. We use the unitary

U |x⟩ = |ax mod p⟩

Applying this multiple times:
Uk |x⟩ = |akx mod p⟩

Now can we compute ak in poly-log(k) multiplications? Instead of just multiplying a k times, we
can do something more clever. Suppose k = 2m. We can then do this in m multiplications, since we
can use the powers of a rather than just a. In this case, we can do the multiplication in poly(n)
time.

We begin our circuit in the state |0⟩⊗n |ψ⟩. We then use the Hadamards:Ç
1√

2n
∑

k∈{0,1}n

|k⟩
å

⊗ |ψ⟩

We then apply the unitary:
1√
2n

∑
k

|k⟩ ⊗ Uk |ψ⟩

Now using the definition of the application of the unitary to our state |ψ⟩:

1√
2n

∑
k

ei2πθk |k⟩ ⊗ |ψ⟩

We can say that θ = j
2n , where j is some integer from 0 to 2n − 1. We essentially are saying that we

can represent our θ as some integer out of the 2n possibilities. We can now call this first section of
the state |ϕj⟩:

|ϕj⟩ = 1√
2n

∑
k

ei2πθk |k⟩

PHYS457 Notes Hersh Kumar
Page 35

This can be written as
|ϕj⟩ = 1√

2n

∑
k

ei 2π
2n jk |k⟩

Now let ω = ei 2π
2n :

|ϕj⟩ = 1√
2n

∑
k

ωjk |k⟩

We now claim that the Quantum Fourier Transform has the action

QFT2n |j⟩ = |ϕj⟩

And thus
QFT †

2n |ϕj⟩ = |j⟩

Now we realize that we can use this to go from the state that we have |ϕj⟩, and get |j⟩. Now using
our definition of j, we can find θ from this, since θ = j

2n . Let us look more at the QFT. We first
claim that the set of states {|ϕj⟩}2n−1

j=0 forms an orthonormal basis.

Proof. We have that

|ϕi⟩ = 1√
2n

2n−1∑
k=0

(ωik)∗ ⟨k|

Now taking the inner product with |ϕj⟩:

⟨ϕi|ϕj⟩ = 1
2n

2n−1∑
k=0

ωjk(ωik)∗ ⟨k|k⟩

= 1
2n

2n−1∑
k=0

ω(j−i)k

We can split this into cases. The first case is where i = j. We then have that the ω term is 1, and
we have that

⟨ϕi|ϕj⟩ = 1
2n

2n−1∑
k=0

1 = 1

Now if i ̸= j, we have that ∆ = j − 1, and ω∆ ̸= 1:

(ω∆)2n =
Ä
(ei 2π

2n)∆
ä2n

= ei2π∆ = 1

Now we have that the inner product is

⟨ϕi|ϕj⟩ = 1
2n

2n−1∑
k=0

(ω∆)k = 1
2n

(ω∆)2n − 1
ω∆ − 1 = 1

Thus we have that this is indeed an orthnonormal basis.

PHYS457 Notes Hersh Kumar
Page 36

We see that the space generated by |ϕ⟩ is the Fourier space that the transform maps to and from.

We can write out the QFT2n in Dirac notation using this:

QFT2n =
∑

j

|ϕj⟩ ⟨phij |

We also note that when n = 1, QFT2 = H, and ω = ei 2π
2 = −1, so |ϕ0⟩ = |+⟩, and |ϕ1⟩ = |−⟩.

We can write out the matrix form of the QFT:

F = 1√
2n

1 1 1 . . . 1
1 ω ω2 . . . ω2n−1

1 ω2 ω4 . . . ω2(2n−1)

1 ω3 ω6 . . . ω3(2n−1)

...
...

...
...

...
1 ω2n−1 (ω2n−1)2n−1

10.6.2 Public-key crypto-systems and RSA

The traditional crypto-system uses private keys, which is where Alice and Bob share a private key,
only visible to those two, and then they send messages encrpyted with that private key, so only
they will be able to decrypt it. Alice has some message m, and encodes it using the key, Enc(m, s),
and then Bob can decrypt it Dec(Enc(m, s), s) = m.

On the other hand, public-key or asymmetric crypto-systems are when Alice has a public key as well
as a secret key. Bob can send a message to Alice by encoding it using the public key, Enc(m, pk),
and Alice uses the secret key to decrypt it, Dec(Enc(m, pk), sk).

RSA is a widely used scheme to do this public-key encryption. The idea is that pk = n, r, where
n = pq, and p and q are large prime numbers. It is hard to go from n to p and q, but easy to go
from p and q to n. The secret key is sk = (p− 1)(q − 1). When we do the encryption:

Enc(m, r) = mr mod n

And the decryption:
Dec(mr, s) = mrs mod n = m mod n

Thus cracking RSA requires a fast method for factoring n, which Shor’s algorithm can be shown to
do much faster than classical algorithms.

10.6.3 Solving Factorization with Quantum Computing

When we say that we want to factorize a large integer N , the input size of the problem is logN .
Most classical algorithms are based on Field Sieve algorithms, which pools together candidates and
then removes the worst ones, and the best that these can do is 2

√
log N , which is close to exponential

but not quite there. We can do slightly better using a Number Field Sieve, which is of the order
2(log N)1/3 . We see that this is super-polynomial with respect to the input size, which is why we
say its a hard problem classically. Shor’s Algorithm on the other hand, will have runtime that is
poly-log(N), which is polynomially with respect to the input size, and thus is efficient.

PHYS457 Notes Hersh Kumar
Page 37

Shor’s algorithm does not try to multiply numbers to get N . Instead, we connect the problem of
factorizing a number to solving a quadratic congruence relation:

x2 − 1 ∼= 0 (mod N)

Suppose N = pq. We know that x2 − 1 = (x+ 1)(x− 1). In the case where pq fits strictly within
one of those terms, then we have no info. However, if p and q are separated in those terms, we can
return the greatest common divisor:

gcd(x+ 1, N) or gcd(x− 1, N)

These will return a nontrivial factor of N . It can be shown that this case occurs often enough for us
to leverage in our algorithm.

We want to find something that will give us a solution for x. Shor’s Algorithm solves what is known
as the order finding problem. We are given a and N , where 2 ≤ a < N , and gcd(a,N) = 1, they
are coprime. We want to find the order, the smallest r such that ar ∼= 1 (mod N).

We want to leverage the fact that if r is even, we have the solution to the quadratic problem, since
a

r
2 will be a solution of x2 ∼= 1. Thus we want a reduction of the problem to the order finding

problem.

Here is an outline of the classical part of Shor’s Algorithm. We have input N .

We first pick a random a ∈ [2, N − 1]. We then compute the gcd of a and N . If it is 1, we have that
a and N are coprime. If it is not 1, we are done, we have found a nontrivial factor of N .

We then use the quantum subroutine to find the order r of a and N .

If the order is even, we compute gcd(a
r
2 −1, N) or gcd(a

r
2 +1, N). These are likely to be a nontrivial

factor of N , with probability ≥ 1
poly-log(N) .

10.6.4 Quantum Order Finding

We want to design a quantum method for finding the order r, given a and N such that they are
coprime. We want to find the smallest r such that ar ∼= 1. We first do some number theory, and
begin with the nonnegative integers up to N :

ZN = {0, ..N − 1}

And then we define the coprimes:

Z∗
N = {x|x ∈ ZN |gcd(x,N) = 1}

This actually forms a group, with operation multiplication modulo N . In fact, it can be shown that
aφ(N) ∼= 1 (mod N), where φ(N) = |Z∗

N |, for all a ∈ Z∗
N . This takes a while, and in fact classically

we don’t know any good way of doing this.

We will see that using quantum phase estimation on a specific unitary will recover the order via an
eigenvalue. The unitary that we use is U : Ma |x⟩ = |ax mod N⟩. We then consider a controlled
version, C − U : C − Ma |k⟩ |ϕ⟩ = |k⟩Mak |ϕ⟩. We know that Mk

a |x⟩ = |akx mod N⟩. We know
that this can be implemented in poly-log(k).

PHYS457 Notes Hersh Kumar
Page 38

We also need to find the eigenvectors of Ma. Suppose we have the state

|ψ0⟩ = 1√
r

(|1⟩ + |a1⟩ + |a2⟩ + · · · + |ar−1⟩)

Applying Ma:
Ma |ψ0⟩ = |ψ0⟩

We see that |ψ0⟩ is an eigenvector of Ma, with eigenvalue 1. Expanding this, we can construct
eigenvectors via:

|ψ1⟩ = 1√
r

(|1⟩ + ω−1
r |a⟩ + ω−2

r |a2⟩ + · · · + ω−(r−1)
r |ar−1⟩)

Where ωr = ei 2π
r . When we apply Ma to |ψ1⟩, we find

Ma |ψ1⟩ = 1√
r

(|a⟩ + ω−1
r |a2⟩ + ω−2

r |a3⟩ + · · · + ω−r−1
r |1⟩) = ωr |ψ1⟩

Thus we see that we have an eigenvector of Ma, with eigenvalue ei 2π
r . If we can construct this state,

and then use phase estimation, we will output the phase, which is 1
r . We can generate eigenvector

|ϕj⟩. This has eigenvalue ei 2πj
r . Using phase estimation, we will return j

r . Since we know j, we can
find r. The issue is now how we generate these eigenvectors.

The observation that helps out here is that we know that

|1⟩ = 1√
r

r−1∑
j=0

|ψj⟩

We cannot prepare the eigenvectors, but we can generate a superposition of all the eigenvectors.
Now applying QPE:

QPE |1⟩ =
∑

j

QPE |ψj⟩ =
∑

j

1√
r

|ψj⟩ ⊗
∣∣∣∣jr
∑

The output will be an approximation of j
r for a uniformly picked j from [0, N − 1]. This is the

quantum part of quantum order finding. One possible issue is that we get an approximation, not
the exact value.

11 Mixed States
Suppose we have an ensemble of states, each with a probability, {|ϕi⟩ , pi}. State |ψi⟩ occurs in the
measurement with probability pi. We can instead have one single object to represent an ensemble
of quantum states. This is called a density operator, and using only the density operator, we
can recover all the physics. Mathematically, a density operator is a positive-semidefinite matrix
with trace equal to 1. Recall that positive-semidefinite means that A = A†, which tells us that
the eigenvalues of A are real, and A ≥ 0, which means that either all the eigenvalues are ≥ 0, or
equivalently, ∀ |ϕ⟩ , ⟨ϕ|A|ϕ⟩ ≥ 0. Also recall that the trace of a matrix is the sum of the eigenvalues
of A.

Suppose we have a pure state, an ensemble with only one quantum state, |ψ⟩ ∈ Cd. How can we
connect a vector to our density operator matrix? We just use the outer product of the vector with
itself:

|ψ⟩ ⟨ψ|

PHYS457 Notes Hersh Kumar
Page 39

If we take the trace of this, we get 1. We also need to verify that the outer product is positive
semidefinite. We can do this using the first definition, showing that the eigenvalues are all non-
negative. We have that |ψ⟩ is an eigenvector with eigenvalue 1, and we have eigenvectors |ϕ⟩ that are
orthogonal to |ψ⟩, and we have that the eigenvalues are 0. Using the second definition, ⟨ϕ|A|ϕ⟩ ≥ 0
for all ϕ:

⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩ ≥ 0 → | ⟨ψ|ϕ⟩ |2 ≥ 0

This is always true, by definition. Thus, |ψ⟩ ⟨ψ| is the density operator for a pure state.

Now let us move on to a mixed state, {|ψi⟩ , pi}. We will find that the density operator ρ is given by

ρ =
∑

i

pi |ψi⟩ ⟨ψi|

Now we need to show that this is a well-defined density operator. We need to verify that the trace
is 1.

Tr(ρ) = Tr

Ç∑
i

pi |ψi⟩ ⟨ψi|
å

Now leveraging the fact that the trace operation is a linear operation:

Tr

Ç∑
i

pi |ψi⟩ ⟨ψi|
å

=
∑

i

pi Tr(|ψi⟩ ⟨ψi|) =
∑

i

pi = 1

Now we need to prove that ρ ≥ 0. Using definition 2:

∀ |ϕ⟩ ⟨ϕ|ρ|ϕ⟩ ≥ 0

⟨ϕ|ρ|ϕ⟩ = ⟨ϕ|
∑

i

pi |ψi⟩ ⟨ψi| |ϕ⟩ =
∑

i

pi ⟨ϕ|ψi⟩ ⟨ψi|ϕ⟩ =
∑

i

pi|ci|2 ≥ 0

If we have a density operator ρ, and the rank is 1, we are in a pure state. If the rank is greater than
1, we have that ρ =

∑
i λi |ψi⟩ ⟨ψi|, and we have a mixed state. Suppose we have the mixed state

{(|0⟩ , 1
2), (|1⟩ , 1

2)}:

ρ = 1
2 |0⟩ ⟨0| + 1

2 |1⟩ ⟨1| = 1
2I

Note that density operators are not unique, if we find the density operator of the mixed state
{(|+⟩ , 1

2), (|−⟩ , 1
2)}, we have that ρ = 1

2I, the same as the previous state. Thus a given density
operator can correspond to many different ensembles.

If we look at the Bloch sphere, and we have a point |ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩, which corresponds
to a point (θ, ϕ) on the sphere. For a 1 qubit state, we can get the density operator via

ρ = 1
2(I + αxX + αyY + αzZ)

where we have some (αx, αy, αz) ∈ R3. Note that, since the Pauli matrices are traceless, the trace
of ρ is just the trace of the 1

2I matrix, which is 1. If α2
x + α2

y + α2
z = 1, we have a pure state. If

the value is between 0 and 1, we have a mixed state. If we have that (αx, αy, αz) = (0, 0, 0), this is
known as a totally mixed state.

PHYS457 Notes Hersh Kumar
Page 40

11.1 Composite Systems and Partial Trace
Suppose we have a product state |ψA⟩ ⊗ |ψB⟩. We know that ρA = |ψA⟩ ⟨ψA| and ρB = |ψB⟩ ⟨ψB|.
It turns out that ρA⊗B = ρA ⊗ ρB. This is the simple case, where we have a product state.

Suppose instead we have a separable state. We have the state |ψi
A⟩⊗|ψj

B⟩, with probability P ij
AB . We

have that ρ =
∑

i,j P
ij
ABρ

i
A ⊗ ρj

B . We can write this in the form ρ = ρA ⊗ ρB only if P ij
AB = P i

A ×P j
B ,

i.e, the probabilities are independent:

ρ =
∑

i

P i
Aρ

i
A ⊗

∑
j

P j
Bρ

j
B

In the product state, we have no correlation between A and B, and in the separable state, we have
classical correlation between A and B. Anything that cannot be written as one of these two is
considered an entangled state, or quantum correlated state.

We can define a partial trace. Suppose we have a system M ∈ CdA×dA ⊗ Cd
B × dB. The trace over

A is define to be
TrA(M) =

∑
i

(⟨iA| ⊗ IB)M(|iA⟩ ⊗ IB)

This gets an operation on just the B space, we have “traced out” A.

TrB(M) =
∑

i

(IA ⊗ ⟨iB|)M(IA ⊗ |iB⟩)

Let us do a very simple example. Suppose we have |ϕ⟩ = 1√
2(|00⟩ + |11⟩) = 1√

2(|0⟩A |0⟩B + |1⟩A |1⟩B).
Let us compute the partial trace over B. We first need to compute

IA⊗⟨0B|ϕ⟩ ∝ IA⊗⟨0|B |0⟩A⊗|0⟩B +IA⊗⟨0|B |1⟩A⊗|1⟩B = IA |0⟩A⊗⟨0|0⟩B +IA |1⟩A⊗⟨0|1⟩B = |0⟩A

Putting the coefficients back, we have
1√
2

|0⟩A

We also need to compute
IA ⊗ ⟨1|B |ϕ⟩ = 1√

2
|1⟩A

Now we know that

TrB(|ϕ⟩ ⟨ϕ|) = 1√
2

|0⟩A

1√
2

⟨0|A + 1√
2

|1⟩A

1√
2

⟨1|A = 1
2I

Likewise, if we go through the calculation for TrA(|ϕ⟩) = 1
2IB. If we only look at A or only look at

B, we see only classical effects, no quantum effects. However, when we put them together, we get
entanglement.

PHYS457 Notes Hersh Kumar
Page 41

11.2 Determining Entanglement
Suppose we are given a bipartite |ψ⟩, |ψ⟩ ∈ CA ⊗ CB. Can we determine whether |ψ⟩ is entangled
or not? This problem is difficult to see directly. Let us do this in multiple approaches.

The first approach is by contradiction. We assume that |ψ⟩ is a product state, which means that we
can write it as follows:

|ψ⟩ = (α0 |0⟩ + α1 |1⟩) ⊗ (β0 |0⟩ + β1 |1⟩) = α0β0 |00⟩ + α0β1 |01⟩ + α1β0 |10⟩ + α1β1 |11⟩

Comparing this against a state such as 1√
2(|00⟩ + |11⟩), we see that this gets 4 equations with 4

unknowns, and in this case we see that there are no values of our 4 variables that will generate this
state. This tells us that our assumption of the state is false, and thus the state is entangled, which
confirms what we know about the state.

The first approach is very complicated for larger problems. Let us look at the second approach,
using density operators. Suppose |ψ⟩ is a product state, |ψ⟩ = |ψ⟩A ⊗ |ψ⟩B . Taking the partial trace
of the density operator:

TrA(|ψ⟩ ⟨ψ|) = |ψ⟩B ⟨ψ|B
TrB(|ψ⟩ ⟨ψ|) = |ψ⟩A ⟨ψ|A

We note that these are both of rank 1. If we take a state and compute its partial traces, and we get
something that is not of rank 1, we know that we do not have a product state. For example, for
the EPR state, we have that TrA(EPR) = TrB(EPR) = 1

2I, and the rank of this is larger than 1,
meaning that they are indeed not product states. It turns out that finding whether a mixed state is
entangled or not is an NP -complete problem.

11.3 Schmidt Decomposition
If we are given a bipartite state |ψ⟩, we can always decompose it as follows:

|ψ⟩ =
d∑

i=1

√
λi |Ui⟩A ⊗ |Vi⟩B

where d = min(dA, dB), and λi ≥ 0, with
∑

i λi = 1. {|Ui⟩A}d
i=1 is an orthonormal basis for A, and

likewise {|Vi⟩B}d
i=1 is an orthonormal basis for B.

The Schmidt decomposition gives us a lot of nice properties when writing out a bipartite state.

11.4 Working with Density Operators
Suppose we take a state |ψ⟩ and apply some unitary U to it:

|ψ⟩ → U |ψ⟩

We can look at how the density operator changes:

|ψ⟩ ⟨ψ| → U |ψ⟩ ⟨ψ|U †

Now how do we deal with measurement? In the vector formalism, we can write out the state

|ψ⟩
∑

αi |ϕi⟩

PHYS457 Notes Hersh Kumar
Page 42

and the probability of measure |ϕi⟩ is |αi|2, and the post-measurement state is |ϕi⟩.

Using density operators, we have that

ρ = |ψ⟩ ⟨ψ| =
∑
i,j

αiα
∗j |ϕi⟩ ⟨ϕj |

If we look at the matrix of ρ, we see that the diagonal elements are just the probabilities, which
makes sense, since we know that Tr(ρ) = 1, the probabilities should sum up to 1. Mathematically:

P0 = Tr(ρ |0⟩ ⟨0|)

And more generally:
Pk = Tr(ρ |ϕk⟩ ⟨ϕk|)

The post-measurement state will be |ϕk⟩ ⟨ϕk|:

|ϕk⟩ ⟨ϕk| = |ϕk⟩ ⟨ϕk| ρ |ϕk⟩ ⟨ϕk|
Tr(|ϕk⟩ ⟨ϕk| ρ |ϕk⟩ ⟨ϕk|)

12 Quantum Error Correction
12.1 Classical Error Correction

Let us begin with classical error correction. The motivation for this was hardware issues, back when
the error rates in the computer hardware was higher. However, we still have to worry about classical
error rate when it comes to communication, where data corruption or packet loss is still an issue.

The first think to start with is an error model. Error correction is only possible in certain error
models. For example, if we totally destroy the hardware, there is intuitively no way to recover the
data. The key idea behind error correction techniques is that we want to add redundancy, such as
more copies of the information.

In the context of communication, we have a sender and a receiver. The sender has some plain
message to send over some channel to the receiver. We have that the channel is noisy, and the
receiver wants to receive the plain message. If we naively just send over the message, we will not
recover the plain text perfectly due to the noise. We instead use an encoder to add redundancy,
and then send that encoded message over the channel, and then have the receiver decode that to
recover the original string.

Let us use a specific noisy channel, known as a binary symmetry channel. We send over messages
consisting of 0s and 1s, and the binary symmetry channel gives a probability p to turn a 0 in
the message into a 1. This means that we have a 1 − p probability to keep the original bit. The
symmetry is there because the probability of flipping a 0 to a 1 is the same as flipping a 1 to a 0.

Suppose our plain message is a single bit, x ∈ {0, 1}. The first scheme is to send it directly over,
obtaining x̃. The probability of x = x̃ is 1 − p, by the definition of the channel’s noise. The
probability of error will be p.

The second scheme is known as repetition code, which is where we map x ∈ {0, 1} to a code x1x2x3,
where x1 = x2 = x3 = x. We then send this through the channel. We will receive x̃1x̃2x̃3, and we
want to decode this into x. A reasonable decoder would be to just take the majority, and consider
that to be x. Let’s analyze this. We care about the number of flips, not where the flips happen. We

PHYS457 Notes Hersh Kumar
Page 43

know that the number of flips being 0 occurs with probability (1 − p)3. The probability of 1 flipping
is

(3
1
)
p(1 − p)2. The probability of 2 flipping is

(3
2
)
p2(1 − p). The probability of all 3 flipping is p3.

If the number of flips is 0 or 1, the majority decoder will work, and if the number of flips is 2 or 3,
it will fail. This means that the probability of error is O(p2) (not p3 because 0 < p < 1).

Suppose we want to know where the error was. If we look at the input 0 and we at most 1 flip,
there are 4 possibilities, 100, 010, 001, 000, and we can do something similar for 1. Note that these
are all disjoint. Is there a way for us to tell which bits have been or have not been flipped? To do
this, we can compute the values of x1 ⊕ x2 and x2 ⊕ x3. If we go through the case work, we see that
each of the 4 cases for the message leads to a unique pair of values in the two computations:

x1x2x3 = 100 → x1 ⊕ x2 = 1, x2 ⊕ x3 = 0

x1x2x3 = 010 → x1 ⊕ x2 = 1, x2 ⊕ x3 = 1

x1x2x3 = 001 → x1 ⊕ x2 = 0, x2 ⊕ x3 = 1

x1x2x3 = 000 → x1 ⊕ x2 = 0, x2 ⊕ x3 = 0

Thus this allows us to find out where the flips are.

12.2 Quantum Error Correction
We first have to come up with an error model for quantum computation. We have a system (in this
case a single qubit), and an environment, and then we have some unitary that is the interaction
between the system and the environment:

USE |ψ⟩S |0⟩E

Where all we know is |ψ⟩S , we have no information on the unitary. However, we know that we end
up with something of the form

αII |ψ⟩S ⊗ |ϕI⟩E + αXX |ψ⟩S ⊗ |ϕX⟩E + αZZ |ψ⟩S ⊗ |ϕZ⟩E + αXZXZ |ψ⟩S ⊗ |ϕXZ⟩E

The first term is the case where we have no error. The second term is the case where we have bit
flip error, the third is where we have a phase error, and the final case is where we have both. Thus
our model allows us to only consider X and Z errors.

Let us begin with bit flip errors. We can try the repetition code once more, by mapping

|0⟩ → |000⟩ |1⟩ → |111⟩

This can be done via two CNOT gates quite easily:

|ψ⟩ • •
|0⟩
|0⟩

This will map |ψ⟩ = α |0⟩ + β |1⟩ to α |0⟩L + β |1⟩L, where the L denotes “logical” representation,
|0⟩L = |000⟩, and similarly for |1⟩L. Now we pass this through the channel, and we will operate one
of the following errors (for a single bit flip):

I, X1 ⊗ I2 ⊗ I3, I1 ⊗X2 ⊗ I3, I1 ⊗ I2 ⊗X3

PHYS457 Notes Hersh Kumar
Page 44

We can once again use the “syndrome” computations, x1 ⊗ x2 and x2 ⊗ x3.

x1 •
x2 • •
x3 •
0
0

Now we can do the corrections based on the values in the two ancilla, which are the computed
syndrome values:

x1 •
x2 • •
x3 •
0 • •
0 • •

Thus the control chain is that we encode, send over the channel, use error detection, and then error
correction. Then we use the decoding.

Now we have to deal with Z errors. Z errors are phase flip errors, Z |0⟩ = 0, Z |1⟩ = − |1⟩. Let us
look at our encoding. If we state with |+⟩, which gets encoded to 1√

2(|000⟩ + |111⟩), and after the
error we are left with 1√

2(|000⟩ − |111⟩), which decodes to |−⟩, giving us an error. Thus the current
encoding does not work, and we will have to come up with a new one. Let us first recall that a Z is
the same as an X in the Hadamard basis, Z = HXH. We can apply a Hadamard after encoding on
every qubit, and then add a Hadamard to every qubit right before decoding. If there is no Z error,
then the Hadamards will cancel, and if there is, the HZH will turn into an X, so we just have an
X error. Thus we see that the Z encoder is just the X encoder with additional H gates on every
qubit afterwards. Likewise, the Z decoder is just the X decoder with H gates on every qubits prior
to the X encoder.

The Z encoder will map
|0⟩ → |000⟩ → |+ + +⟩ = |0⟩L

|1⟩ → |111⟩ → |− − −⟩ = |1⟩L

If the X code is correct, then the Z code is also correct. We can also argue this from first principles,
on a test state |ψ⟩ = |+⟩:

|ψ⟩ = |+⟩ → 1√
2

(|+ + +⟩ + |− − −⟩) → 1√
2

(|− + +⟩ + |+ − −⟩)

After the correction, we will see

1√
2

(|+ + +⟩ + |− − −⟩) → |+⟩

One big issue is that if we protect against X errors, we can’t protect against Z errors, and vice-versa.
We want something that can protect against both.

PHYS457 Notes Hersh Kumar
Page 45

12.2.1 9-qubit Shor’s Code

This code encodes a single qubit into 9 qubits, and it can protect against any single X or Z error.
We have a 3-qubit X code, and a 3-qubit Z code, and we use something known as composition, to
merge the two.

We begin with some single qubit original message |ψ⟩. We then can encode the message with the
X code, giving |ψ⟩X . We then apply the Z code to each of the 3 encode qubits, giving 9 qubits
that represent |ψ⟩XZ . Likewise, we can also generate |ψ⟩ZX . Note that the last application of a
code is the error that we can protect against. |ψ⟩XZ can protect against a Z error, and |ψ⟩ZX can
protect against an X error. Now the question is whether they can also protect against previous
applications of codes, can the |ψ⟩XZ code also protect against an X error?

Let us first examine |ψ⟩XZ . Suppose we start with some arbitrary state |ψ⟩ = α |0⟩ + β |1⟩. After
the X encoding, we have

α |000⟩ + β |111⟩

And after the Z encoding on this we have

α(|+ + +⟩)(|+ + +⟩)(|+ + +⟩) + β(|− − −⟩)(|− − −⟩)(|− − −⟩)

We know by definition that this can handle a Z error by construction. If we now think about an X
error, we see that an X will generate a phase flip on one of the terms, which we have no way of
fixing.

The second method involves using the Z code first:

α |0⟩ + β |1⟩ → α |+ + +⟩ + β |− − −⟩

Now applying the X code:

1√
2

(|000⟩+|111⟩)⊗ 1√
2

(|000⟩+|111⟩)⊗ 1√
2

(|000⟩+|111⟩)+β 1√
2

(|000⟩−|111⟩)⊗ 1√
2

(|000⟩−|111⟩)⊗ 1√
2

(|000⟩−|111⟩)

We know that by definition, this can solve an X error by definition. Can this solve a Z error? We note
that if we apply a Z error on one of the 9 qubits, we have that 1√

2(|000⟩+ |111⟩) → 1√
2(|000⟩−|111⟩).

We note that this goes from the X coded form of |+⟩ to the X coded form of |−⟩. This is exactly the
error that the Z code is designed to fix, we apply the X decoder and use the error correction of the
Z code. Thus we see that this code works if we apply the Z code first and the X code afterwards.

There exists a 5 qubit QECC for a 1-qubit message, against a single X or Z error, which is the best
known.

12.3 Stabilizer Codes
Suppose we have an n qubit system. A stabilizer is a tensor product of Pauli matrices, I⊗X⊗Z⊗. . . ,
in any combination. If we are given a collection of stabilizers over an n qubit space, we can define a
codeword space, as the common +1 eigenspace of all the stabilizers. If we have some state in this
space, then for any stabilizer, the stabilizer applied to the state returns the state itself:

∀i, Si |ψ⟩ = |ψ⟩

PHYS457 Notes Hersh Kumar
Page 46

This condition actually gives us many nice properties about error correction. For example, if we
have a 3-qubit X code, we have two stabilizers,

S1 = Z1 ⊗ Z2 ⊗ I3

S2 = I1 ⊗ Z2 ⊗ Z3

When we have an X1 error, X1 |ψ⟩, we are no longer in the +1 eigenspace of the two stabilizers. We
can apply the S1 stabilizer:

S1X1 |ψ⟩ = (Z1 ⊗ Z2 ⊗ I)X1 |ψ⟩ = (Z1X1 ⊗ Z2 ⊗ I)

Now we note that Z and X anticommute, so ZX = −XZ:

= (−X1Z1 ⊗ Z2 ⊗ I) |ψ⟩ = −X1S1 |ψ⟩

= −X1 |ψ⟩

Thus we have that it now lies in the −1 eigenspace of the stabilizers. If we do the same thing for
S2, we see that it remained in the +1 eigenspace. We can generate a table

I X1 X2 X3
S1 + - - +
S2 + + - -

We see that this is similar to the syndrome computations that we had before.

	Church-Turing Thesis
	Reversible Computation
	Interference
	Axioms of QM
	State Space Postulate
	Evolution Postulate
	Composition Postulate
	Measurement Postulate
	Partial Measurement

	No-Cloning Theorem
	Quantum Protocols
	Bennett's 4 Laws
	Super-dense Coding
	Quantum Teleportation

	Zeno Effect, Anti-Zeno Effect
	Zeno Effect
	Anti-Zeno Effect

	Elitzur-Vaidman Bomb
	Quantum Gates and Circuits
	Pauli-Rotation Gates
	General 1-qubit Unitary Gates
	Universality
	Efficiency of Approximating General Functions
	Approximation of Unitary Gates
	Solovay-Kitaev Theorem

	Quantum Algorithms
	Query Model
	Deutsch Algorithm
	Phase Kickback

	Deutsch-Josza Algorithm
	Simon's Algorithm
	Grover's Algorithm
	Lower Bounding Grover's Algorithm

	Shor's Algorithm
	Quantum Phase Estimation
	Public-key crypto-systems and RSA
	Solving Factorization with Quantum Computing
	Quantum Order Finding

	Mixed States
	Composite Systems and Partial Trace
	Determining Entanglement
	Schmidt Decomposition
	Working with Density Operators

	Quantum Error Correction
	Classical Error Correction
	Quantum Error Correction
	9-qubit Shor's Code

	Stabilizer Codes

