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1 Crystal Structures
This course deals with ordinary matter in its solid, condensed state. The key thing is that in the
solid phase, atoms or ions which make up the solid, have more or less fixed positions with respect to
each other. The definition of crystal structure is an arrangement of atoms or ions in space. The key
questions that we will be asking for the first third of the course are:

• How are the atoms arranged in solids? (Chapter 1)

• How is the structure of a solid found experimentally? (Chapter 2)

• What holds a solid together? (Chapter 3)

Solids have three kinds of structures:

1. Crystalline - The atoms or ions have a highly ordered and repetitive/periodic arrangement.
Examples include NaCl, quartz, BaTiO3, diamonds, etc.

2. Amorphous/Disordered - There is no relation between the positions of atoms which are
sufficiently far apart. Examples include amorphous Si, amorphous phase change memory (e.g.
GeSbTe)

3. Quasi-crystalline - Atoms have an ordered but non-repetitive/non-periodic arrangement.
Examples include Mg32 (AlZn)49, Al–Pd–Mn.

When we talk about periodic arrangements in crystalline structures, we mean that we have transla-
tional invariance. Another key term in the crystalline definition is the word “ordered”. Most of the
time we will deal with crystalline materials, because amorphous materials are more complicated
and mysterious. Until a few decades ago, crystalline and amorphous materials were the only types
thought to exist, until the discovery of quasi-crystalline solids, which were discovered in 1984. For
example, the first example of a quasi-crystalline solid that is listed in the examples has pentagonal
structure, which cannot infinitely repeat, they do not tile a plane infinitely without breaking at
some point. Thus the structure is ordered, but non-periodic.

In this course, we will only cover crystalline solids, because the periodicity of crystalline solids is
the basis for our mathematical description of the solid. Let us do some definitions. A Lattice is a
repetitive/periodic arrangement of points in space. A Bravais Lattice is a lattice which “looks the
same” from any lattice point. The first example of this is shown in Figure 1.
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Figure 1: An example of a 2D Bravais Lattice, the lattice looks identical when at any point.

We can see that if we are at different points on this lattice, the lattice looks exactly the same at any
point we pick. A second example of a lattice is shown in Figure 2.

Figure 2: An example of a 2D hexagonal lattice, which tiles infinitely.

This lattice is not a Bravais Lattice, as we can see that points A and B are not equivalent.

Primitive Translation Vectors (PTVs) are a set of vectors a1,a2,a3 such that all the points on
the Bravais lattice can be written as

R = n1a1 + n2a2 + n3a3

Where n1, n2, n3 are any and all integers. For a given Bravais lattice, PTVs are not unique, there is
more than 1 way to traverse to every point. This is demonstrated in Figure 3.
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Figure 3: Two sets of primitive translation vectors on a 2D lattice.

The Primitive Unit Cell is the volume enclosed by a parallelpiped (usually) formed by a set of
PTVs, a1,a2,a3, as displayed in Figure 4. This is the smallest volume cell which can be repeated
using PTVs to exactly fill the space. Shapewise, a primitive unit cell is not unique, but all of them
have the same volume:

V = |a1 · (a2 × a3)|

Figure 4: An example of the parallelpiped generated by a set of primitive translation vectors.

One important type of primitive unit cell is the Wigner-Seitz Cell, which is important for
understanding electronic structure of solids. This is a primitive cell volume formed by regions of
space closest to a single lattice point. The recipe for building this cell first begin with a lattice.
We then pick a lattice point, and draw lines to all nearest neighbors. We then draw perpendicular
bisectors, and then connect them to enclose the cell. A 2D example is shown in Figure 5:
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Figure 5: The construction of a Wigner-Seitz cell in a simple 2D lattice.

Now let us think about attaching atoms to points on the lattice. One important point is that most
real materials/crystals are not Bravais lattices. Most solids are composed of more than 1 type of
atom, and thus we have sites with different atoms, and therefore they are no longer equivalent. To
fully specify a crystal structure, we do need a Bravais lattice, but we also need a basis. In other
words, the recipe for creating a crystal is a Bravais lattice and a basis.

The basis is a set of vectors which specify positions of atoms or ions in a primitive cell. An example
of a simple crystal structure is shown in Figure 6.

Figure 6: An example of a simple crystal structure using a basic lattice and basis vectors.

We see that when ufilled = 0, we just place an atom on every lattice point. We also note that for a
particular structure, a set of lattice and basis vectors is not unique. We could have just as easily
done ufilled = 1

2ax̂+ 1
2aŷ, where a is the lattice spacing. The result of this choice of basis is shown

in Figure 7.
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Figure 7: An example of the same crystal structure shown in Figure 6 with a different basis.

We can look at another example, where we are delineating the distances between lattice points,
marked by xs. We set the basis vectors to have an unfilled atom to the left of every lattice point,
and a filled atom to the right. The result is shown in Figure 8.

Figure 8: An example of a crystal structure with 2 basis vectors, each corresponding to a different
type of atom.

There are infinitely many possible crystal structures, but only 14 types of Bravais lattices. The
different types were established in 1845. These are known as the irreducible representations.

1. Cubic (3 types):

a) Simple Cubic (SC): 3 sides have the same length, and 3 angles are right angles (α, β, γ = 90
degrees).

b) Body Centered Cubic (BCC): Atoms at corners and 1 at center.

c) Face Centered Cubic (FCC): Atoms at corners and center of each face.

2. Tetragonal (2 types): Sides are a = a ̸= b, α = β = γ = 90 degrees

a) Simple

b) Body Centered (BCT)

3. Orthorhombic (4 types): a ̸= b ̸= c, α = β = γ = 90 degrees

a) Simple

b) Face Centered

c) Base Centered (Atoms only on center of 2 of the 6 faces)
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d) Body Centered

4. Hexagonal (1 type): angles a1 and a2 are 120 degrees, and a1 = a2 ̸= a3.

5. Monoclinic (2 types): a ̸= b ̸= c, α = β = 90 degrees, γ ̸= 90 degrees.

a) Simple

b) Base Centered

6. Trigonal/Rhombohedral (1 type): a = b = c, α = β = γ ̸= 90 degrees.

7. Triclinic (1 type): a ̸= b ̸= c, α ̸= β ̸= γ

We see that the triclinic crystals have the “lowest” symmetry. We will see that as we increase the
temperature of a solid, it will work its way up the list, undergoing structural transitions.

Let us look at examples of structures of real solids. The first structure we will look at is CsCl, which
is a simple cubic lattice with a 2 atom basis, as shown in Figure 9.

Figure 9: The crystal structure of CsCl, which is built on a simple cubic lattice with a 2 atom basis.

This is an example of a perfectly ordered crystal. Note that this is not a BCC lattice, since the
center atom is not the same as the corner atom. If we had a disordered crystal, we don’t have the
same pattern. In that case, we say that each atom could be a “gray” atom, an average between the
two atoms. If we do this, then suddenly every atom is the same, and we can use the BCC model.

Let us look at another example of a real structure. This is known as Hexagonal close-packed
structure (HCP). Examples include Be, Cs, and Cd. Close-packed means that space is filled to
maximal extent. An example is shown in Figure 10:
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Figure 10: The crystal structure of a Hexagonal Close-Packed (HCP) structure.

HCP is a hexagonal lattics and a 2 atom basis, where the atoms are identical. We need two basis
vectors, even though both of the two types of atoms must be the same. There are two ways to get
maximum packing, the first being HCP. The other method is FCC. Imagine packing spheres with
minimal wasted space. The diagram for maximal packing in two dimensions is shown in Figure 11.

We can easily pack the first layer, and the second layer is constructed by placing the centers of the
second layer spheres on top of the open space between 3 spheres. For the third layer, we have two
choices. The first choice is to place the third layer where the first layer was placed, while the second
choice is to place the third layer above the space between three second layer spheres. We expect
both of these methods to eventually repeat, since we have a crystal. If we consider the first layer
locations as A, and the second layer choice as B, the choice of repeating the first layer choice obtains
ABABABA . . . . This generates the HCP structure. The other option is ABCABCABCA . . . .
This generates the FCC structure. This is why we say that HCP and FCC are “cousins”. The
packing fraction for these two methods is 0.74.

A single crystal has a perfect lattice that goes on for a long distance (think of calcium carbonate, if
it remains ordered, we see that the macroscopic crystal looks like the crystal structure.) If instead
the lattice is broken, we have powder, which is just a collection of “small” single crystals (for calcium
carbonate that gives us chalk). When we look at single crystals and we do things like diffraction, we
are essentially looking at one plane that intersects the crystal, whereas when we have a powder, we
are essentially shooting our beams at a bunch of small crystals that have arbitrary orientations, and
thus we are essentially getting the information about all possible orientations of the single crystal.
In single crystal materials, we have “perfect” ordering, up to macroscopic scales (calcium carbonate
crystals for example), and at such large scales, properties and shapes of materials reflect those at
the microscopic level.

We can now move onto describing planes of crystals. We use the convention of the Miller index, as
shown in Figure 12.

The plane intersects our 3 axes at 3 points, some distance along each axis, xa1, ya2, and za3. The
Miller index is given by

Ä
1
x ,

1
y ,

1
z

ä
, and we multiply by a number such that we have the smallest set
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of integers. In the case shown in Figure 12, our intersections are given byÅ1
4 ,

1
1 ,

1
5

ã
We can then multiply by 20, and we have the smallest set of integers, which is the Miller index for
this plane: Å1

4 ,
1
1 ,

1
5

ã
× 20 = (5, 20, 4)

Typically we look at planes such as the one that has Miller index (1, 1, 1), as well as the one that
intersects the a1 axis, and is parallel to the a2 a3 plane. This has Miller index (1, 0, 0) (where we
use the fact that 1/∞ = 0). When we have Miller indices that are negative, we instead place a bar
on top of the negative, so we can have indices like (1, 1̄, 0).

Now we note that (1, 0, 0) and (1̄, 0, 0) are equivalent planes, since they are just translations of
each other. To denote a family of planes, we use curly brackets, so the family of planes that are
equivalent to (1, 0, 0) would be written as {1, 0, 0}. In the demonstration of the Si crystal wafer, we
used cleaving to expose the (1, 0, 0) plane.

2 Crystal Diffraction and the Reciprocal Lattice
The key question for Chapter 2 is how the crystal structure/atomic arrangement determined
experimentally. When solid state physics first started, 60-70 years ago, the only answer to this
was diffraction. Nowadays there are other techniques, such as electron microscopy and scanning
tunnelling microscopy. In this class we will only cover diffraction. This can be done with x-rays,
electrons, and neutrons, and this method uses reciprocal space techniques. Nowadays there are real
space techniques, which can directly resolve the structure of the atomic arrangement.

Diffraction can be used to determine the microscopic arrangement of any crystalline materials. For
this reason, diffraction is used in biology, medicine, etc. Diffraction relies on both the wave and
particle nature of light, and it turns out that we can also do this with electrons.

Recall that c is the speed of light, c = 108 meters per second. We also have the relationship between
the speed, wavelength, and frequency:

c = νλ

For any kind of light, we have that the energy is given by E = hν, where h = 6.626 × 10−34 Joule
seconds. Thus, for light, we can write the wavelength in terms of the energy:

λ = hc

E

For particles, like in the case of electrons and neutrons, we write the energy in terms of the
momentum:

E = p2

2m
We then use the idea of DeBroglie wavelengths, where any momentum has an associated DeBroglie
wavelength:

λ = h

p
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From this, we can write the energy in terms of the wavelength:

E = h2

λ2
1

2m

Which then allows us to control the wavelength by changing the energy:

λ = h√
2mE

We then introduce the idea of a wavenumber, k, which is defined as k = 2π
λ . With this, we can write

the momentum in terms of the wavenumber:

p = h

2πk

For x-rays, we have that λ = 12.4Å
E , where E is measured in kiloelectronvolts.

We will see that we want λ to be on the order of, or slightly smaller than the lattice spacing a, in
order to see strong diffraction effects.

2.1 Review of Wave Mechanics
For a wave in 1 dimension, we have ψ = A cos(kx). We have that the wavenumber k is related to
the wavelength:

k = 2π
λ

The wave propagation speed is given by c = νλ = ω
k , where ω is the angular frequency, ω = 2πν.

The relationship between ω and k is known as the dispersion relation.

For travelling waves, we use Euler notation (complex exponentials):

A cos(kx) → Aeikx

A travelling wave in 1 dimension is described as

ψ = Aei(kx−ωt)

In particular, that is a wave moving in the positive x direction, and if we have an exponential of the
form Aei(kx+ωt), we have a wave moving in the negative x direction.

In 3 dimensions, we use wave vectors instead of wavenumbers, and we can write a plane wave:

ψ = ei(k·x−ωt)

Where x = (x, y, z). k points perpendicularly to the wavefront. The “intensity” of the wave is given
by the square of the amplitude of the wave.

The basis of diffraction is the idea of constructive and destructive interference. Waves add construc-
tively if they are in phase, but will interfere with each other if they are out of phase.
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2.2 Bragg Diffraction
Let us begin with the experimental arrangement for powder diffraction. The x-ray source is sent
through a monochromater, and collimated into a beam, and then shot at the sample, which is slowly
rotating. The film records the location of the diffracted beams. The diagram for the arrangement is
shown in Figure 13.

Afterwards, we take off the film strip. We then have that α = 0 is at the center. The reason we
rotate the sample is because we want to obtain all possible planes that will give us a diffraction
peak. The peaks occur due to the x-rays constructively interfering, while most rays destructively
interfere, giving nothing on the film. An important point is that each material or structure gives a
unique pattern of lines. The intensity of a peak depends on the Z of atoms, the number of electrons.
The real space structure can be determined from the pattern.

Another type of setup is a θ to 2θ scan. In this case, the sample is held fixed, and the angle of
incidence of the x-rays and the angle of reflection are identical. A diagram of this setup is shown in
Figure 14.

This is also known as a locked scan, since the angles between the incidence and reflected rays are
locked to be equal to each other. In a scan, the θ increases continuously, and the resulting data
looks like the plot in Figure 15.

The idea behind Bragg diffraction (1912) is based on the planes that make up the crystal. We can
zoom in on the surface and see the different planes of the crystal, with some spacing d. We can
model light rays striking the crystal, parallel rays that each strike a different layer of the crystal, and
bounce out of the crystal. We are assuming that the crystal is aligned correctly, and the incident
angle is the same as the reflected angle, θi = θr. If we look at rays that are on the plane below the
top plane, we have that the ray travels a slightly longer distance than the ray above it, and likewise
for all rays below. The second layer ray has to travel an extra 2d sin θ overall, to keep up with the
top level ray. The third layer ray has to travel an extra 4d sin θ. Thus we have that our condition
for the rays meeting the detector at the same time, we have that the extra distance is an integer
multiple of the wavelength. The intensity of the reflected rays together will add constructively only
if we have that

2d sin θ = c0λ

4d sin θ = c1λ

8d sin θ = c2λ

...

where the cs are integers. Thus the simplest solution to this is that 2d sin θ = nλ, and this is the
only way that we have a “hit”.

We can rewrite this, and we have that

sin θ = nλ

2d

The left side is bounded in magnitude by 1, and thus we have that

nλ

2d ≤ 1
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Thus, in order for a diffracted intensity to happen, λ < 2d. This is why we need the wavelength to
be of the order of the crystal lattice spacing. Depending on d and λ, we can have multiple allowed
values of n that will get us intensity peaks.

Now we have to explain how we get different intensity peaks, and we also need to explain how x-rays
reflect off of atomic planes. To answer these questions, we need to go beyond the simple Bragg
picture. To do this, we will need to introduce the concept of the reciprocal lattice.

2.3 Reciprocal Lattice
The real lattice is in Cartesian space, and the basic idea is that the reciprocal lattice is in the
k-space, which can also be thought of as the momentum space, since p = ℏk.

Definition 2.1. Given a Bravais lattice with primitive translation vectors a1,a2, and a3, the
reciprocal lattice is a set of vectors G, such that

G = l1b1 + l2b2 + l3b3

where ls are 1,±1,±2,±3, . . . , and the bs are defined as

b1 = 2π
V

a2 × a3

b2 = 2π
V

a3 × a1

b3 = 2π
V

a1 × a2

Where V = a1 · (a2 × a3), the volume of the primitive cell.

We denote the real position on the lattice as R = n1a1 + n2a2 + n3a3. G ’s have one important
property:

bi · aj = 2πδij

Which is easy to prove, since we define the b in terms of cross products of two of the three a vectors.
We can also prove that

eiG·R = 1

for any G and R for a given crystal.

We can write this out:

eiG·R = ei[n1l1a1·b1+n2l2a2·b2+n3l3a3·b3]

= e2πi[n1l1+n2l2+n3l3]

= 1

Let us look at some examples of a reciprocal lattice. For a simple cubic:

a1 = ax̂

a2 = aŷ



PHYS431 Notes Hersh Kumar
Page 14

a3 = aẑ

The volume of the unit cell in this case is just a3. We can then compute the reciprocal lattice
vectors:

b1 = 2π
a3 a

2(ŷ × ẑ)

= 2π
a
x̂

b2 = 2π
a
ŷ

b3 = 2π
a
ẑ

In this case, outside of the scaling factor, the reciprocal space of the simple cubic seems to also be a
simple cubic lattice.

Let us now compute the reciprocal space vectors for the fcc case. We have that

a1 = a

2(ŷ + ẑ)

a2 = a

2(x̂+ ẑ)

a3 = a

2(x̂+ ŷ)

We can then compute the volume, and we find that V = a1 · (a2 × a3) = a3

4 . We can then use this
to compute the reciprocal space vectors:

b1 = 2π
a

(−x̂+ ŷ + ẑ)

b2 = 2π
a

(x̂− ŷ + ẑ)

b3 = 2π
a

(x̂+ ŷ − ẑ)

It turns out that there are scaled versions of the BCC primitive translation vectors, and the inverse
relation holds, the reciprocal space vectors of BCC gets the FCC PTVs. This also shows that if we
take the reciprocal of the reciprocal lattice vectors, we get the original real space vectors.

2.4 The Von Laue Diffraction Condition
Previously, we did the simple Bragg diffraction picture. Now let us derive diffraction using the
reciprocal picture. Let us zoom further into the picture of the Bragg diagram. Suppose an x-ray
scatters off of 2 atoms, each on their own plane. We have the vector R between the two atoms, and
we have an incoming wave with wavevector k. the incident angle is θi, and the reflected angle is θr,
with some reflected wavevector k′. We assume elastic scattering, so |k| = |k′|. The intensity of the
x-ray scattered is given by

I(k → k′) = |F |2

= |F1 + F2|2
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Where F1 is the amplitude of the x-ray scattering off of the first atom, and F2 is the amplitude of
the x-ray scattering off of the second atom. Recall that x-rays are electromagnetic waves, which
means that we have a travelling electric field and travelling magnetic field:

E = E0e
i(k·x−ωt)

B = B0e
i(k·x−ωt)

We can rewrite the amplitude/intensity relationship:

F1 =
√
I0e

ik(Si+Sr)

F2 =
√
I0e

ik(Si+Sr+∆S)

Where I0 is the initial intensity, Si is the distance from the x-ray source to atom 1, Sr is the distance
from atom 1 to the detector, and ∆S = ∆Si + ∆Sr (the extra distance the wave travels for hitting
the second atom). We can compute the values of ∆Si and ∆Sr:

∆Si = R · k

|k|

∆Sr = −R · k′

|k′|

We can then write out the expression for the scattered intensity:

|F1 + F2|2 = |F1|2
∣∣∣ 1 + F2

F1

∣∣∣2
= I0

∣∣∣ 1 + eik(Si+Sr+∆S)

eik(Si+Sr)

∣∣∣2
= I0

∣∣∣ 1 + eiR(k−k′)
∣∣∣2

Notice that the intensity can range from 0 to 4I0. The maximum intensity occurs when eiR(k−k′) = 1.
Now recall that the reciprocal lattice has the property that eiR·G = 1, which matches this condition.
This means that we have a maximum whenever we have k − k′ = G.

We can generalize this picture to N atoms, and we have some Fi for each atom i. Let us first look
more into the maximal condition. We have that k · k′ = G, and thus k′ = k − G. We can then
find that |k′|2 = |k|2 + |G|2 − 2k · G, which then lets us write that |G|2 = 2k · G. Any k that
satisfies this condition for any G will result in a diffraction point. This leads us to Brillouin zones.
This condition has a very useful geometrical interpretation, it lets you find all ks that satisfy the
condition. Brillouin zones are Wigner-Seitz cells in the reciprocal lattice. We first draw the lattice
(reciprocal), and then extend dotted lines from a point to all nearest neighbors. We then draw the
perpendicular bisectors and connect them. The central region is the first Brillouin zone, and the
next closest region is the second Brillouin zone, and every Brillouin zone covers the same amount of
volume/area in the reciprocal lattice.

Brillouin zone boundaries (BZB) represent all k values that satisfy the diffraction condition. We
can prove this for any k that lands on the BZB. we have that the perpendicular distance from the
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center point to the BZB is |G|
2 , and thus we have that

G

2 · k = G

2 k cos θ

and we know that cos θ = Gk
2 , and thus we can rewrite our statement, and we find that

2G · k = G2

Thus, Brillouin zones are a graphical representation of all ks that diffract off of a crystal and produce
peaks. In fact, in the Von Laue picture, the reciprocal picture of the Brillouin zones has the same
geometry as the real space picture, with the incident wavevector k and the reflected wavevector k′

being orthogonal to each other.

How is this information useful for figuring out the real-space crystal structure?

If we can get the full reciprocal lattice, then we can just use the reciprocal lattice definition and
find the real space lattice vectors. We can get the full reciprocal lattice by mapping the BZBs in
the lattice. How do we do this? We first fix the wavelength λ = 2π

k , and we sweep the k direction,
(can be thought of as sweeping θ). We get “hits” whenever the swept k lands on a BZB.

We can do a variation of this, instead of fixing λ, we fix θ, and we modify the magnitude of k. This
is basically pointing in a certain direction in reciprocal space, and marking all the intersections with
the BZBs. With these experiments, we can map out where the boundaries of the Brillouin zones
are, and from those we can find the G vectors, and then use the definition of the reciprocal lattice
to find the real space lattice vectors.

2.5 N Atom Diffraction
We looked at the case of 2 atom diffraction, and we now want to extend this to N atoms. This
process will help us figure out the differences in intensity between different peaks. It turns out
that it is really electrons and electron clouds that are doing the scattering, and they are spread
out. When we look at the structure of a crystal in the real world, we have electron clouds, and the
electrons make the crystal “blurry”, they have probabilistic positions. Therefore, we consider the
concentration of electrons at a particular position in the lattice. To do this, we have to of course
take into account electrons being contributed from atoms that are nearby, but in fact we should
take into account the contribution of all atoms. We will integrate across the entire crystal.

We define n(r) to be the number of electrons per unit volume at position r. r is measured from
some global origin in the crystal. We index each atom via the center/nucleus of the atom. In fact,
we know the electron concentration of particular atoms, relative to their centers, for example, we
know nLi(r)′, where the prime denotes that it is relative to the center of the atom, not the global
origin for the crystal.

Recall that for 2 atoms, I(k → k′) = I0|1 + eiR·(k−k′)|2. R determined the relative position between
the two atoms. We can say that we got 2 terms from two atoms, located at R1 = 0 and r2 = R.
We can then generalize this to N atoms:

I = I0|1 + eiR2·(k−k′) + eiR3·(k−k′) + . . . |2

= I0|
∑

atoms
eiRi·(k−k′)|2
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But really we know that it is the electrons that scatter the x-rays, so we should factor that in:

I = I0
∣∣ ∑

electrons
eir·(k−k′) ∣∣2

= I0
∣∣ ˆ n(r)eir·(k−k′) d3r

∣∣2
We can then rewrite this for the amplitude:

F =
√
I0

ˆ
n(r)eir·(k−k′)d3r

Let us now think about n(r). Electron concentrations are associated with atoms, and they are
quantified relative to the origin of the atoms.

For every point in the space, we need to think about the contribution from all atoms:

n(r) =
∑

all atoms
ni(r − ri)

Where ri is the origin or nuclear center of atom i, and ni(r′) is the electron concentration for atom
i located at r′ = 0.

Remember that a crystal is a Bravais lattice and a basis. We can then break down the summation
into one that references the real space lattice vectors. The position of atom i can be written as

ri = Rm1m2m3 + uj

Where Rm1m2m3 = m1a1 +m2a2 +m3a3, and uj is the basis vector. The basis determines the type
of atom, and each atom of the same type will have the same basis vector. We then define nj(r′) as
the electron concentration at r′ due to atom type j whose center is at r′ = 0. Using this, we can
write out the total electron concentration:

n(r) =
∑

m1m2m3

∑
j

nj(r − Rm1m2m3 − uj)

We can then write out the amplitude:

F =
√
I0

ˆ
n(r)eir·(k−k′) d3r

=
√
I0

∑
m1m2m3, j

ˆ
nj(r − Rm1m2m3 − uj(r))eir·(k−k′) d3r

We then do a change of variables, r′ = r − Rm1m2m3 − uj , and we can rewrite the expression as

F =
√
I0

∑
m1m2m3, j

ˆ
ei(k−k′)·(r+Rm1m2m3 +uj)nj(r′) d3r′

=
√
I0

∑
m1m2m3 j

ei(k−k′)·(Rm1m2m3 +uj) ∈ ei(k−k′)·r′
nj(r′) d3r′
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The integral is related only to the inner structure of a single atom. This is known as the atomic
form factor for that particular atom. We know (by experiment) what the electronic concentration
is, so we essentially separate out the integrated part:

ˆ
ei(k−k′)·r′

nj(r′) d3r′ = fj(k − k′)

= fj

This is the atomic form factor, and is the fourier transform of nj(r′). Now let us go to the total
intensity:

I = |F |2

= I0

∣∣∣ ∑
m1m2m3 j

ei(k−k′)·Rm1m2m3fj(k − k′)ei(k−k′)·uj

∣∣∣2

We are doing all of this to understand where relative intensity peaks come from, and therefore we
are interested in peaks, which is when k − k′ = G. Now let us look at the sum over ms:∑

m1m2m3

eiG·Rm1m2m3

=
∑

m1m2m3

1

= N

This is the total number of lattice points. Thus the intensity will be written as

I = N2I0

∣∣∣ ∑
j

fj(G)eiuj ·G
∣∣∣2

We now define S(G), called the structure factor:

S =
∑

j

fj(G)eiuj ·G

This is information about a unit cell in reciprocal space. Thus we have that the intensity is given by

I = N2I0
∣∣ S(G)

∣∣2
This defines the intensity of a dffraction peak specified by G. Let’s do an example. We will look at
CsCl structure, which is quite common. This is a simple cubic structure, with a 2 atom basis. We
place the Chlorine at the lattice points, and a Caesium in the center of the unit cell. Thus we have
that

uCl = 0

uCs = a

2(x̂+ ŷ + ẑ)

The lattice vectors are given by

R = a(m1x̂+m2ŷ +m3ẑ)
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G = 2π
a

(l1x̂+ l2ŷ + l3ẑ)

We can now compute S(G):

S(G) =
∑

j

fj(G)eiuj ·G

= fCl(G)ei0·G + fCse
i 2π

a
(l1x̂+l2ŷ+l3ẑ)· a

2 (x̂+ŷ+ẑ)

= fCl + fCse
iπ(l1+l2+l3)

Now we note that if l1 + l2 + l3 is even, then we get S(G) = fCl + fCs, and if l1 + l2 + l3 is odd, then
we get fCl − fCs. These are the conditions that cause the relative intensities of the diffraction peaks.

We see the CsCl structure in many other binary compounds, suppose an arbitrary one called AB. If
fA ∼ fB , then S(G) will be 2fA for l1 + l2 + l3 even, and we will get 0 if l1 + l2 + l3 is odd. This is
known as extinction.

Last time we found the equivalency between k − k′ = G and the Bragg picture, where we noted
that whenever there is a set of planes, there is a separation associated with the planes, d. There is
some θ where diffraction takes place, and we have that 2d sin θ = nλ.

We know that every G gives a BZB to satisfy k − k′ = G. We also know that a particular plane
separation d is connected to G, d = 2π

G . We also know that each peak is connected to a particular
G, based on the miller index (l1, l2, l3).

If we decrease d, we see that we will increase G for each peak. Therefore an increasing order of 2θ,
the peaks (planes) go as (100), (110), (111), (200), (210), etc, in the order of increasing

√
l21 + l22 + l23.

Note that this only applies for powder diffraction, since that is the only time we will see all possible
peaks.

Experimentally, we can find fj(G) via diffraction. Once we have a complete mapping of fj(G), we
can do an inverse Fourier transform to get the nj(r), which then gets the real lattice structure.

For a monoatomic lattice, with 1 atom per unit cell, then S(G) = f(G), and then the intensity
directly varies with the atomic form factor. We can also do a glancing angle diffraction, where
the angle of incidence and reflection is very shallow. In this case, G ∼ 0, and then we find that
f(G) = Z, the number of electrons.

3 Forces in Crystals
So far, we have created arrangements of atoms in crystals, and we have figured out how to
experimentally determine the structure. Now let us ask some different questions. What holds a
solid together? Why does a crystal have one structure and not another? For instance, monoatomic
Fe crystals (α-Fe), is BCC. Why is it not FCC or HCP?

Let us first write down some properties of solids that we know. The first is that solids don’t flow or
spread out, so the atoms inside the solids are in fixed positions with respect to each other. It is also
difficult to pull a solid apart, so there is something holding it together. We also know that it is
difficult to compress a solid, so there is something keeping it apart. Thus we have that there are
repulsive and attractive forces involved in solids, so the crystals assume structures where attractive
and repulsive forces on each atom are balanced. It turns out that this arrangement is usually the
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lowest energy arrangement. Crystals can exist in meta-stable structures, local minima where forces
are balanced, but there is a global minimum of energy which is the most stable.

For example, graphite is a more stable form of carbon than diamond. We can think of diamond
and graphite as two wells in the plot of the energy in configuration space, and the graphite well is
deeper than the diamond well.

3.1 Pauli Exclusion Principle
The Pauli Exclusion Principle states that no 2 particles can be in the same state at the same time.
Each ψ is a state of electron, and each state is an orbital, denoted ψs, ψp, ψd, etc. Now when we go
from a single particle wavefunction to a multiple particle wavefunction, ψ(r1, r2) is the wavefunction
that describes the probability amplitude of finding the first particle at r1 and the second at r2, at
the same time. Electrons have two important properties in quantum mechanics. The first is that
they are all identical to each other, there is nothing that distinguishes one electron from any other
electron. In the classical picture, particles are billiard balls, and we can keep track of them. For
example, in a classical collision, we can keep track of which particle is which. However, in QM,
when we have a collision we cannot keep track of which particle is which. For this reason, our
multi-particle wavefunctions are invariant under particle interchange, ψ(r1, r2) = ±ψ(r2, r1).

The second important property is that electrons are fermions, and because of this, they need to
take the anti-symmetric case, so ψ(r1, r2) = −ψ(r2, r1).

The Pauli Exclusion Principle arises when we attempt to have two fermions in the same state,
the wavefunction will be 0 (since we assume that the wavefunction is written as ψ(r1, r2) =
ψa(r1)ψb(r2) − ψa(r2)ψb(r1)). Another important thing to remember in physics is that high energy
states are generally not favored, things settle to a lower energy state. Positive or increasing potential
energy is associated with a repulsive force, and inversely, negative or decreasing energy is associated
with an attractive force.

3.2 Repulsive Forces between Atoms/Ions
There are several difference sources of repulsion between atoms/ions. They can arise from

1. Electrostatic Force - Ions having the same sign charges will repel against each other.

2. Pauli Exclusion Principle- Prevents putting more than one electron in a given state.

3. Heisenberg Uncertainty Principle - ∆x∆p ≥ ℏ
2 , and the energy is proportional to p2, so

squeezing any particles into a small volume costs energy, which generates repulsion.

The PEP and the Uncertainty principle prevent a crystal from collapsing in on itself, and why
condensed matters are incompressible.

3.3 Attractive Forces between Atoms/Ions
These are essentially electrostatic in origin, the magnetic effects are generally quite small, and thus
result in only small corrections to the electrostatic forces. We give different names for the types of
interactions depending on their details.
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Bond Type Example Strength Binding Energy per Atom
Van der Waals Ar Weak ∼ 0.1 eV/atom
Ionic NaCl Strong ∼ 5 eV/atom
Covalent Si Strong ∼ 5 eV/atom
Metallic Na Moderate ∼ 1 eV/atom

3.3.1 Van der Waals Solids

These solids are not very strong, and only exist at low temperatures. Generally, they are uncharged
atoms with closed shells. Some examples include noble gases. The melting point, (which is related
to the strength of the bond), of the noble gases are shown below:

Element Melting Point
Ne 24.5 K
Ar 83.8K
Kr 116 K
Xe 161 K

The repulsive force generated by the Van der Waals force in these solids is based on the fact that
noble gases like Ne are closed shell:

Ne : 1S22S22P 6

When 2 Ne atoms are pushed together (when the electron clouds begin to overlap), they get become
part of the same state, which means that the PEP begins to apply. To avoid this, one of the
electrons will increase its energy (the shells are completely full so it must go to a higher energy),
which is something that the system does not want. This is because it is a big energy expense for
one electron to be in a higher shell, so this results in a repulsive force.

The repulsive force takes the form of

U(r) = A

r12

Or U(r) = U0e
−λr, where r is the distance between the atoms, and A,U0, λ are constants. Here,

for Van der Waals, we use the A
r12 model. We note that it is positive and increases rapidly as r is

decreased.

Now let us look at the attractive force. Where does it come from? The shells are full, and the atoms
are neutral so its not electrostatic. The semi-classical explanation of the attractive force in Van der
Waals solids is that we can treat atoms as dipoles, where the positive charge is the nucleus and the
negative charge is the center of mass of the negative charge. The electron clouds are fluctuating, so
at any given time, the center of mass of the cloud is not coincident with the nucleus position, so we
can treat it like a dipole, without any real issues.

We can consider the dipole moment, p, which has magnitude l(t)q, where l(t) is the time dependent
distance between the two charges, and q is the charge.

We have the Lennard-Jones potential, which is an empirical formula:

J(R) = 4ϵ
ï( σ
R

)12
−
( σ
R

)6ò
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Where the first term is repulsive and the second term is attractive, based on their signs. This is the
potential between any two atoms. The total potential is given via a summation:

Utotal = 1
24ϵN

∑
j

ñÅ
σ

Rij

ã12
−
Å
σ

Rij

ã6ô
Where we are summing over all atoms, and there are N of them, and the 1

2 is there to stop the
doublecounting.

If we plot the energy as a function of R, the atomic distance, we have a repulsive term that goes as
R−12, and also an attractive part that goes as R−6. If we add these together, we have a bound state
at the minimum of the potential, where we have a shallow potential well. To find this minimum,
all we have to do is take the derivative and set it equal to 0, then solve for R, and we have R0,
the equilibrium distance. From there, we can find the equilibrium energy, Utotal(R0). This is the
cohesive energy, the amount of energy it takes to separate an atom from the crystal. If we compare
the results of this model to the experimentally derived value of R0

σ , where R0 is found via x-ray
diffraction and σ is found via gas properties, we find that the values are in good agreement.

Why is it that it forms an FCC solid at this point, and not something else like BCC? If we look at
the energy expression Utotal:

Utotal = 2ϵN
[∑

j

Å 1
pij

ã12 ( σ
R

)12
+
Å 1
pij

ã6 ( σ
R

)6
]

We see that the values of pij are purely geometrical, and for bcc we have different values than fcc.
If we go through and compute the minimum energy distance, we find that R0 for bcc is smaller
than the R0 for fcc, and therefore the energy for bcc is larger than the energy for fcc. This tells us
that fcc structure has lower energy. This is why fcc is chosen over bcc.

Let us now discuss the effect of pressure on the Van der Waals crystals. As we squeeze the crystal,
R will decrease. If we apply enough pressure, crystals will undergo a phase transition to a new
structure. This makes sense if we draw a plot of U against R, where we see that as we decrease R,
we will be pushed up to the left of the potential curve. Because of this, at some point, fcc will no
longer be lower energy than bcc, and thus if we apply enough pressure, the crystal will change from
fcc to bcc, since that is now lower energy than the fcc structure.

3.3.2 Ionic Crystals

Many crystals consist of ions, held together by electrostatic forces, such as the Coulombic attraction.
These materials are often electrical insulators. Ionic crystals are commonly formed by an alkali
metal (Na, K, Cr), and a halogen (Fl, Cl, I, Br, etc). Where do ions come from? Let us look at
NaCl as an example. It is energetically favorable to transfer the electron from sodium to chlorine.
We add some amount of energy to the sodium (the ionization energy) and we are left with Na+ and
an electron. On the other hand, if we give neutral chlorine an electron, it releases energy and we
are left with Cl– , and the amount is given by the electron affinity. Once the ions are formed, they
will electrostatically attract each other, and repel like ions. The cohesive energy is once again the
energy needed to separate the ions infinitely far from each other.

Ions have closed shells, so we have a strong repulsive interaction at close distances, due to the Pauli
Exclusion Principle. We model the potential due to the PEP as

UPauli = λe−R/ρ
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Where R is the distance between ions and λ and ρ are constants. The ions will form so that they
have local neutrality. We have to look at the nearest neighbors, where every other neighbor is
repulsive rather than attractive. We have a sort of checkerboard pattern of pluses and minuses.
There will be a positive energy for the like-sign ions, and a negative energy for the differing sign
ions, given by the Coulombic energy:

UCoulombic = q1q2
4πϵ0Rij

Then we have the Pauli Exclusion Principle, which we only think about the nearest neighbors being
repulsed. This is essentially because we’re thinking of the ions as bouncy balls, and the only ones
that we need to avoid overlaps with are the nearest neighbors:

UPauli = zλe−R/ρ

Where z is the number of nearest neighbors. We can then write out the total energy:

Utotal = N

2

(∑
j

− ±e2

4πϵRij
+ zλe−R/ρ

)
Where the ± alternates.

If we now let Rij = Rpij , where R is the distance to the nearest neighbor:

Utotal = N

2

[
e2

4πϵ0R
∑

j

(−1)±1
pij

+ zλe−R/ρ

]

The sum
∑ ±1

pij
is known as the Madelung constant, and is denoted α, and only depends on the

geometry of the structure.

3.3.3 Covalent Crystals

For covalently bonded crystals, they are more difficult to work with, since we need to deal with
quantum chemistry. This is because we are no longer dealing with closed shells like in the Van der
Waals and ionic cases. The filled shells aren’t perturbed by adjacent atoms as much, so we can
have simple models, but when we have partially filled shells, things get a lot more complicated, and
there are no simple model potentials, we need quantum mechanics. In covalently bonded crystals,
electrons rearrange to occupy available states. We must use QM to find ψ, and then we can calculate
the energy of the state. The rough picture is electrons pair up to occupy space in between bonded
atoms, and the electrons in a pair have opposite spins. The pairing takes place in such a way that
each atom “sees” filled shells, this is the octet rule. We can use qualitative QM to understand what
happens.

Suppose we have H2, which has two protons and 2 electrons. First we need to find the correct
Hamiltonian, which we can use to solve for the stationary states. In this case, the Hamiltonian will
be of the form

Ĥ = HH1 +HH2 +H ′

Where the first two terms represent the Hamiltonians of the two atoms, and the third term is the
interaction term. From this, we can obtain the solution for the two particle wavefunction. Two
possible solutions come out:

ψ1 = χspin antiparallelψspatial symmetric
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ψ2 = χspin parallelψspatial antisymmetric

We can see that these both obey the particle-interchange rule, since one term is anti-symmetric and
another is symmetric in each of the wavefunctions. We can plot the symmetric and anti-symmetric
wavefunctions, and we find that the symmetric case implies that there is a high probability that
electrons exist in between nuclei, while in the anti-symmetric case, the probability amplitude goes
to 0 in between the nuclei. The symmetric case provides a bound state, while the anti-symmetric
case does not give a bound state. Thus we have that the crystals are formed when the wavefunction
is the spatially symmetric wavefunction, which means that the spins are anti-parallel, as we stated
before. The key is that by forming a pair, the electrons exist in a space between the atoms, rather
than individually surrounding atoms, like in the closed shells. Since the electrons are in the space
between, we have increases ∆x. The Uncertainty Principle tells us that the energy will be on the
order of ℏ2

8m(∆x)2 , and we see that increasing ∆x increases the energy. Thus the covalent bonds
decrease the total energy, and thus the state is energetically favorable. Let us discuss properties of
covalent bonds. They are strong, relative to the Van der Waals forces, they are “stiff”, they don’t
bend, and are “directional”, they repel each other and spread out in space.

Let’s look at CH4, methane as an example. C has 4 unfilled states, and thus will form 4 bonds.
CH4 has a tetrahedral arrangement, all the bonds are maximally separated from each other. This is
known as the diamond structure, since it is the structure of the carbon in diamond, and it turns
out that silicon also follows this structure. Essentially, covalent bonds are a mixture of existing
states to produce density in between atoms. This is once again due to the uncertainty principle, in
metallic bonding, all the electrons are shared by all the atoms, so ∆x is very large. Because of this,
the energy, which is p2

2m ≥ (∆p)2

2m , and we can use the uncertainty principle to derive that the energy
decreases as we increase ∆x.

4 Phonons
Previously, we plotted potential wells, and we had states at the bottom of the well, jiggling about.
We can equivalently describe that as a harmonic oscillator. The harmonic oscillator is obtained via
F = −kx, and the associated potential energy is 1

2kx
2. We can write out Newton’s second law:

m
d2x

dt2
+ kx = 0

Which has solution x = eiωt, where ω =
»

k
m . The approximation that we make is that at every

local minimum of a well, we can approximate it as a harmonic oscillator potential well, so U(R)
near R = R0 is given via a Taylor expansion:

U(R) = U(R)|R0 + ∂U

∂R
|R0(R−R0) + ∂2U

∂R2 |R0
(R−R0)2

2 + . . .

We note that the first term is just U(R0), the second term is 0, and the third term is of the form of
the harmonic oscillator:

U(R) = Umin + αx2

Where x = R−R0. The higher order terms make this an anharmonic oscillator, and we will see in
chapter 5 that those terms cause things like thermal expansion. Thus we have that a good starting
model for an atom is a mass on a spring. Thus when we generalize to all atoms in the crystal, the
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model is masses connected to each other by springs. The motions of the lattice are called elastic
waves, sound, or vibrations. We also introduce a particle, a lattice excitation called a phonon.
Phonons are quantum mechanical descriptions of crystal vibrations. They are a manifestation of
elastic waves, just like photons are electromagnetic waves. The phonons are responsible for heat
transmission in insulators, thermal expansion, resistance in metals, and superconductivity in metallic
superconductors.

We begin with a 1D monoatomic crystal. Let us make some assumptions. We assume that
each atom couples only to its nearest neighbors, and we only have small oscillations/vibrations.
Let us look at our chain of atoms. The sth atom has some displacement us from displacement
Rs. We also have some lattice spacing a. The potential energy of the sth atom is given by
Es = 1

2c(us − us+1)2 + 1
2c(us − us−1)2, where we have taken into account the spring to the right

and the spring to the left. The force on the atom is given by F = −∂Es
∂us

. From this, we have that

Fs = cus+1 + cus−1 − 2cus

We have N coupled equations, since we have a force on every single atom, and each will take
into account the motion of two other atoms. We guess that the solution should have the form of
oscillations in time and space:

u ∝ e−iωt

u ∝ eikx

Except in this case we don’t have x, we use sa instead. However, we note that x is usually a
continuous variable, but sa denotes a discrete set of positions. Together, our guess is now

us(t) = ue−i(ωt−ksa)

Where k = 2π
λ , and is the wavenumber, ω = 2πf , the angular frequency, and the ωt− hsa implies

that we are moving to the right.

We can insert this solution into the expression for the force on atom s, to check if the solution really
does work:

m
d2us

dt2
= cus+1 + cus−1 − 2cus

m (−iω)2 ue−i(ωt−hsa) = cue−i(ωt−h(s+1)a) + cue−i(ωt−h(s−1)a) − 2cue−i(ωt−hsa)

−mω2 = ceika + ce−ika − 2c
−mω2 = 2c cos ka− 2c
−mω2 = 2c(cos ka− 1)

From this, we have that

ω2 = 2c
m

(1 − cos ka)

We see that we are nearing an expression that relates ω to k, the dispersion relation. We can use a
trig identity:

1
2 − 1

2 cos θ = sin2 θ

2
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ω2 = 4c
m

sin2 ka

2

Which leaves us with

ω =
…

4c
m

∣∣∣ sin2 ka

2

∣∣∣
What does this mean? Provided that we have this relationship between ω and k, we have a valid
wave-like solution. Recall that for waves, the phase velocity is given by ω

k , and the group velocity
is given by dω

dk . The group velocity can be thought of as the speed at which information/energy
propagates. In this case, the group velocity is the speed of lattice vibrations, or the speed of phonons.
Note that dω

dk is not constant, it depends on k. We note that at the boundaries of Brillouin zones
(k = ±π

a ), the phonons do not propagate, they cannot exist. This isn’t a physical place, this is in
reciprocal space.

In the case of sound, sound is low frequency, and long wavelength. In this limit, 2π
λ = k → 0, and

thus sin ka
2 → ka

2 . Thus we have that ω ≈ a
√

c
mk, and the group velocity approaches a constant,

dω
dk ≈ a

√
c
m . This is also called the continuum limit, you get the same result if λ ≫ a:

2πa
λ

≪ 1 → ka

2 ≪ 1

We also note that if k gives us a solution, then so does k+ 2nπ
a , for any integer n. Thus by convention,

we specify the range −π
a ≤ k ≤ π

a , which covers the first Brillouin Zone.

Let’s look at k = π
a , which is where dω

dk = 0. We can then write out the equation for the wave:

us = ue−iωteiπs

= (−1)sue−iωt

This tells us that every other atom is flipped with respect to the neighbors. In time, atoms are
oscillating in the normal way, but spatially we have alternating positions. We can think of the
atoms as being out of phase with their neighbors in k space. The solution at k = −π

a is identical.
This is “similar” to what happens to x-rays when k = ±π

a , we are in phase and we have diffraction
peaks. This is sort of like a resonance.

If we have that kmax = π
a , which is related to the wavelength:

kmax = π

a

= 2π
λ

We have that λmin = 2a. We can also think about the frequency:

fmax = speed of vibration
λmin

And this is generally around 6 × 1012 Hertz.
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4.1 Longitudinal and Transverse Waves
Suppose now our 1D crystal is in 3D space. There are 3 possible types of waves:

1. Longitudinal Waves: Oscillating along the length of the crystal, along the direction of wave
propagation.

2. Transverse y Waves: Oscillate perpendicular to the propagation direction in the y direction
(“Horizontally”). Can also be referred to as being polarized in the y direction.

3. Transverse z Waves: Oscillate perpendicular to the propagation direction, in the z direction
(“Vertically”). Can also be referred to as being polarized in the z direction.

Atom displacement can now be represented as a vector:

us(t) = êiAe
−i(ωt−ksa)

Where êi can be either x̂, ŷ, or ẑ. These are known as acoustic phonons, because they are associated
with sound waves. It turns out that when we go from 1D crystals in 3D space to 3D crystal in a 3D
space, you still get Longitudinal Acoustic branch, and 2 Transverse Acoustic branches on the plot of
ω vs k. Instead of a line of atoms oscillating, we have a plane of atoms oscillating together.

4.2 Optical Modes
Suppose we have two different atoms per unit cell. So far, we have only looked at monoatomic
crystals. Let’s suppose as before that we have nearest neighbor interactions, and atoms with masses
m and M . Suppose we denote xs to be the displacement of the s’th small atom, and vs to be the
displacement of the s’th large atom. The potential energy of the two s’th atoms is given by

Exs = 1
2C(xs − vs−1)2 + 1

2C(xs − vs)2

Evs = 1
2C(vs − xs)2 + 1

2C(vs − xs+1)2

We can then write out the equations of motion:

Fxs = m
d2xs

dt2

= −∂Exs

∂xs

= −2cxs + cvs−1 + cvs

Fvs = M
d2vs

dt2

= −∂Evs

∂vs

= −2cvs + cxs + cxs+1

We see that we have two coupled equations, and we guess a wavelike solution, in time and space:

xs(t) = xei(ωt−ksa)

vs(t) = vei(ωt−ksa)
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We can plug these in, then drop the exponentials, since those pull out of the diffeq, and we are left
with

−mω2x = −2Cx+ Cv + Cveika

−Mω2v = −2Cv + Cx+ Cxe−ika

Now solving these for x:

x = v(Ceika + C)
−mω2 + 2C

And we can then generate a quadratic in terms of ω2:

4 + mMω4

C2 − 2mω2

C
− 2Mω2

C
= 2(1 + cos ka)

Which gives us that

ω2 =
Å
C

M
+ C

m

ã
±

 Å
C

M
+ C

m

ã2
− 2C2(1 − cos ka)

mM

This gives us the full dispersion relation for 2 atoms in a unit cell. To see basic solutions, we look at
limits, such as k → 0, where we get that

ω2(k = 0) = C

M
+ C

m
±
Å
C

M
+ C

m

ã
The − solution gives us ω = 0, which is the same acoustic solution as before. The + solution gives
a new type of solutions, the longitudinal optical mode.

If we look at the limit where k → 0, we find that

ω =
 

2
Å
C

M
+ C

m

ã
And from this we find that

x = −M

m
v

The smaller atoms and the larger atoms are moving in opposite directions in the optical mode, and
the small mass moves M

m times more. These are longitudinal waves, but there are transverse modes.
Why is this called the optical mode? Suppose m has a positive charge and M has a negative charge.
This is the setup for an ionic crystal. If this crystal oscillates in the TO mode, every half wavelength
the charges will clump together, and we have a dipole wave, which gives us an electric field. This
wave fits the profiles of a travelling EM wave, and thus is conducive to being set up by light. There
are always 1 LA mode and 2 TA modes, but optical modes are different, they arise from having
different atoms in a unit cell. Thus if we have n atoms in our unit cell, we will have n− 1 LO modes,
and 2(n− 1) TO modes. Adding them together, the total number of modes/branches is 3(n− 1)
optical modes, and then the three acoustic modes.
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4.3 Quantization of Lattice Vibrations
Everything that we have done so far was based on classical mechanics, we had the beads on a
string model. We need to start using quantum mechanics to understand collective behavior, such as
thermal properties. We will also need QM to deal with interaction with other excitations/particles,
namely photons and neutrons. Classically, we used collections of harmonic oscillators coupled
together, but phonons are quantum mechanical entities. Formal treatment of phonons requires the
quantum harmonic oscillator Hamiltonian. The results of the Schrodinger equation tells us that the
energy of a vibration/elastic wave mode with a particular ω (with a corresponding k) is given by
ε =

(
n+ 1

2
)
ℏω. The energy depends on n, which is the number of phonons in the state.

When we have n phonons, each carrying energy ℏω, when n is large, we say that this state is excited,
and the modes occupied by n phonons. For each mode, there is a “zero point” energy 1

2ℏω. This
arises from fluctuations of wavefunctions, together with the uncertainty principle. The total energy
of the lattice, taking into account all modes, is given by

U =
∑

k

Å
n+ 1

2

ã
ℏω(k)

Another important concept is the crystal momentum:

p = ℏk

This is associated with the phonon, and is used to understand scattering phenomena. This is
decidedly different from the real, physical momentum associated with atoms vibrating.

4.4 Neutron Scattering
When a neutron strikes the crystal, we have the emission of a phonon. We have some incident energy
εn, and wavevector kn. The neutron is reflected, so we have a reflected energy, ε′

n and wavevector
k′

n. The induced phonon has some energy εph = ℏω, and some wavevector kph, which is related to
the crystal momentum p = ℏkph. To analyze scattering, we do the usual conservation laws (energy
and momentum), and we find ω and kph:

εn = ε′
n + ℏω

However momentum is not conserved in the usual way, which is an indication that the crystal
momentum is not the usual momentum, we have to add a new vector G :

kn = k′
n + kph + G

We “pick” G so that all k s remain inside the first BZ. Similar experiments can be conducted using
light/laser, which is known as Raman scattering. Many important physical properties (functional
properties) are directly tied to phonons. One example of this is phonon mediation giving rise to
superconductivity, which is known as the BCS mechanism.
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4.5 Ferroelectricity
Another example, which we will learn more about, is ferroelectricity. This is associated with the
lowest frequency TO mode. This mode is called the soft mode. The onset of ferroelectricity, with
the lowering of temperature, is accompanied by the softening of the TO mode, the lowering of the
frequency. A classic example of this is BaTiO3, which is not ferroelectric above 130 degrees Celsius,
it is a paraelectric. Above this temperature, we can drive the TO mode with a laser/light. As we
lower the temperature, the mode softens more and more, and at 130 degrees, the mode dies, freezing
the crystal in its current position. The temperature 130 degrees is known as the Curie temperature
for the crystal. Below this temperature, the material is tetragonal.

When the structure freezes, the crystal structure generates a dipole and thus the crystal becomes
one big dipole, we have a sheet of positive charge on the top, and a sheet of negative charge on
the bottom, and inside, the individual unit cells cancel each other out, and we are neutral. This is
static and non-volatile, the structure stays even as time passes.

By applying an electric field pulse, we can flip the charge once. These two states can be used
as memory states (non-volatile memory). In order to explore new ferroelectric materials, phonon
behavior acts as an important indicator, softening modes may indicate a new ferroelectric transition.

4.6 Phonons and Thermal Properties
We will do statistical mechanics (classical and quantum), in order to discuss the thermal properties
of a material induced by phonons. Phonons will help us explain heat capacity, thermal conductivity,
and thermal expansion. Thermal energy is the energy associated with temperature, and we relate
this to the energy of phonons. In electrical insulators, phonons account for all/most of the thermal
properties, but in electrical conductors, they contribute to thermal properties.

The Heat Capacity is the amount of energy required to raise the temperature of a material by 1
Kelvin per mole. This is a real important property which tells us fundamental properties, such as
phases, phase transitions, etc. This is difficult to measure experimentally, but is very important
for characterizing materials. Understanding of heat capacity was lacking until about 100 years ago.
Classical physics could not explain it, and the problem was solved via the introduction of quantum
mechanics, first by Einstein, and then by Debye. The problem of heat capacity was one of the first
successful applications of QM. We will begin with the classical treatment, then move to the Einstein
method, and then finally Debye’s method and the density of states.

4.6.1 Classical Method

The classical model of phonons is vibration of atoms connected to each other with springs. The
total energy is given by the kinetic energy and the potential energy:

E = 1
2m(p2

x + p2
y + p2

z) + C

2 (x2 + y2 + z2)

Where p denotes the momentum in a direction, and x, y, and z represent displacement from
equilibrium positions.

From classical statistical physics, the probability of finding a system in a state with energy E is
proportional to e− E

kBT , which is known as the Boltzmann factor.
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Let there be a parameter A for the system, which takes on different values Ar based on which state
it is in. If the system is in state r, then the associated value of A is Ar. The average value of the
parameter will be

⟨A⟩ =
∑

r Are
− Er

kBT∑
r e

− Er
kBT

In statistical physics, momenta are also degrees of freedom, so we have 6 degrees of freedom in our
classical system. The average energy will be given via

⟨E⟩ =
∑

f

⟨Ef ⟩

Where f is a degree of freedom. We can then write this as

⟨E⟩ = ⟨ 1
2mp2

x⟩ + ⟨ 1
2mp2

y⟩ + ⟨ 1
2mp2

z⟩ + ⟨ c2x
2⟩ + ⟨ c2y

2⟩ + ⟨ c2z
2⟩

Now using the equipartition theorem, which states that each degree of freedom whose energy
contribution is quadratic, has average energy 1

2kBT :

⟨U⟩classical, per atom = 3kBT

Thus for the entire crystal, which has 6N degrees of freedom:

UThermal = 3NkBT

We then relate this to the heat capacity, CV (where we hold volume constant):

CV = ∂Uthermal
∂T

= 3NkB

Classical physics says that all crystals have the same heat capacity at any temperature, there is no
temperature dependence. This is clearly not true, in real life, different crystals have different heat
capacities, and there are temperatures dependencies. It turns out that experimentally defined curves
match the classical answer, but only at high temperatures. As T → 0, we expect that CV → 0.

4.6.2 Einstein’s Model

Einstein made some assumptions when using quantum mechanics. The first was that we were using
the quantum harmonic oscillator, rather than the classical oscillator. The second was that each
atom vibrates at a fixed frequency ω0, in all 3 directions. Next is that ω0 is the same for all atoms
in a crystal.

The thermal energy according to Einstein will be the number of atoms, N , times the average energy
of a QHO in 1 dimension, times the number of dimensions, in this case 3.

Recall that for a QHO:

E = ℏω0

Å
n+ 1

2

ã
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We now need to compute the average of this energy:

⟨E⟩ = ℏω0

Å
⟨n⟩ + 1

2

ã
We need to compute the average excitation of the oscillator:

⟨n⟩ =
∑

n ne
−ℏω0(n+ 1

2 )/kBT∑
n e

−ℏω0(n+ 1
2 )/kBT

Where the denominator is known as the partition function. We can rewrite this as

⟨n⟩ =
∑

n ne
−ℏω0n/kBT∑

n e
−ℏω0n/kBT

= −KBT
∂

∂ℏω0

∑
e−ℏω0n/kBT∑

e−ℏω0n/kBT

= −kBT
∂

∂ℏω0
ln

∑
n

e−ℏω0n/kBT

Where we have used the fact that

∂

∂ℏω0

î
e−ℏω0n/kBT

ó
= − n

kBT
e−ℏω0n/kBT

Now looking at
∑

n e
−ℏω0n/kBT , this is the same as∑

n

e−ℏω0n/kBT = 1 + e−ℏω0/kBT + e−2ℏω0/kBT + . . .

This is an infinite geometric series, and converges:

⟨n⟩ = −kBT
∂

∂ℏω0
ln
ï 1

1 − e−ℏω0/kBT

ò
∑

n

e−ℏω0n/kBT = kBT
∂

∂ℏω0
ln
î
1 − e−ℏω0/kBT

ó
= kBT

1
kBT e

−ℏω0/kBT

1 − e−ℏω0/kBT

= 1
eℏω0/kBT − 1

This is the Planck distribution. Now going back to Einstein’s thermal energy:

UEinstein = 3N ⟨E⟩

= ℏω03N
ï 1
eℏω0/kBT − 1

+ 1
2

ò
Thus the heat capacity will be the derivative of this:

CV = ∂U

∂T
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= 3Nℏω0e
ℏω0/kBT[

eℏω/kBT − 1
]2 ℏω0
kBT 2

= 3NkB

ñÅ
ℏω0
kBT

ã2 eℏω0/kBT[
eℏω0/kBT − 1

]2
ô

This is a much better approximation. Looking at the low temperature limit, as T → 0, ℏω0
kBT ≫ 1, so

we have that

CV ≈ 3NkB

Å
ℏω0
kBT

ã2
e−ℏω0/kBT

For the high temperature limit, as T → ∞, ℏω0
kBT ≪ 1, and we can look at ⟨n⟩:

⟨n⟩ ≈ kBT

ℏω0

If we then compute U :

U ≈ 3Nℏω0

ï
kBT

ℏω0
+ 1

2

ò
≈ 3NkBT

We see that in the high temperature limit, the Einstein model matches the classical model. Einstein’s
model is qualitatively correct, but quantitatively, it is not quite correct.

Experiments find that CV ∝ T 3, as T → 0, not the exponential dependence that Einstein’s model
derives.

4.6.3 Density of States and the Debye Model

Debye’s argument was the solids/phonons don’t oscillate at just one frequency ω0. We know, for
the acoustic branch, ω runs from 0 to

»
2C
M , we need to consider a range of ω, and we also need to

obey the distribution of allowed values of ω.

We define D(ω)dω to be the number of states or modes in a frequency interval given by [ω, ω + dω].
D(ω) is the density of states in frequency space. We can once again write out the thermal energy:

Uthermal =
∑

k

Å
nk + 1

2

ã
ℏωk

=
∑
ω

Å
nω + 1

2

ã
ℏω

≈
∑
ω

nωℏω

=
∑
ω

⟨nω⟩ ℏω

If the sum hits a value of ω that is not allowed, it will not contribute to the sum, which is governed
by D(ω). We will use this when we convert this sum to an integral, using the Debye approximation:

Uthermal =
ˆ ∞

0
⟨nω⟩ ℏωD(ω) dω
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We know what ⟨nω⟩ is, its just the Planck distribution, so all that is left to do is finding D(ω). This
comes from the boundary condition, we have a finite number of allowed states/modes, because of
boundary conditions in the system.

Let us do an example, a simple natural boundary condition for our 1D monatomic crystal. The
boundary condition is that the ends of the crystal are fixed, they do not oscillate. We have N atoms,
and the total length is L = Na. What are the allowed values of k? To do this, we look for values of
k that fit the system. We will intuitively have standing waves. The first is one with wavelength 2L,
which gives a value of kmin = 2π

λ = π
Na . The second mode will be the one that fits a full wavelength

into the crystal, so λ = Na, and thus k2 = 2π
Na . k3 will be 3π

Na . Looking at the trend, we have that
the allowed values of k increment by π

Na .

Using the Debye approximation, we say that dω
dk is a constant, v. Thus we have that ω = vk. From

this, we have that

ωn = nvπ

Na

The density of states, D(ω), can be written as

D(ω) = D(ω)dω
dω

= 1
∆ω

= 1
vπ
Na

= Na

vπ

Where we have used the fact that ∆ω is the distance between allowed modes, so the reciprocal will
be the density. The lesson here is that we have applied a boundary condition, and we obtained
discretized k and ω.

Let’s do another example. This is the standard boundary condition, the periodic boundary condition.
In this case, when we reach an edge, we loop around, and connect it to the other end. In the 1D
case, this means that the displacement of the 0th atom must be the same as the displacement of the
Nth atom:

x0(t) = xN (t)

Or more generally:

xS(t) = x(S+N)(t)

Applying that to the displacement solution xS(t) = Aei(kSa−ωt):

Aei(kSa−ωt) = Aei(k(S+N)a−ωt)

Which leads us to kNa = 2πn, where n = 0,±1,±2, · · · ± N
2 . These limits come about because k

is bounded from −π
a to π

a . We can then write the density of states in k space, since we have that
∆k = 2π

L :

D(k) = D(k)dk
dk
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= 1
∆k

= L

2π
Now we need to convert this to the density of states in terms of ω. To do this, we look at the
relationship between k and ω. D(ω)∆ω is the number of allowed states between ω and ω + ∆ω.
This is the same as the number of states between k and k+ ∆k, but we also have to account for the
number of states between −k and −k− ∆k, which is D(k)∆k+D(−k)∆k. We can compute this to
be L

π ∆k.

Thus we can write out D(ω):

D(ω) = L

π

∆k
∆ω

= L

π

dk

dω

= L

π

1
v

Let us now move to the 3D case. We can use the same argument. In 1D, we have D(k) = L
2π ,

because there is 1 allowed state in every 2π
L . In 3D, this becomes 1 state per

(2π
L

)3 region of volume
in k space:

D3D(k) =
Å
L

2π

ã3

We now once again want to convert this to be in terms of ω:

D(ω)dω = D(k)d3k

Since the total number of states is spherically symmetric, we decide to switch to spherical coordinates.
Working through the Jacobian transformation, we convert d3k into 4πk2dk . Another way of thinking
about it is that we have a spherical shell, with surface area 4πk2. Thus we have that d3k = 4πk2dk,
and we need d3k

dω , which is then 4πk2dk
dω . Now using the Debye approximation, we have that d3k

dω = 4πω2

v3 .
Putting this all together, we have that

D3D(ω) =
Å
L

2π

ã3 4πω2

v2

for ω ∈ (0, ωmax).

We can then compute the thermal energy in 3 dimensions:

Uthermal = 3
ˆ ∞

0
⟨nω⟩ ℏωD(ω)dω

= 3
Å
L

2π

ã3 4π
v3

ˆ ωD

0
ω2ℏω ⟨nω⟩ dω

Where the 3 comes from the 3 different branches of modes. Now inserting the Planck distribution
in for the average, and then doing some work to rewrite the integral, we find that

Uthermal = 12π
v3

Å
L

2π

ã3
ℏ
Å
kBT

ℏ

ã4 ˆ ΘD

0

x3 dx

ex − 1
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Where ΘD = ℏωD
kB

. Now looking at limits, as T → ∞, x → 0, so ex ≈ 1 + x. In this limit, we
find that Uthermal ∝ T , and thus CV is constant. This is the classical limit. For the opposite
limit, T → 0 means that x → ∞, and the integral converges to a constant. In this case, we have
that Uthermal ∝ T 4, and CV ∝ T 3, which is the relation that we are looking for, this matches the
experimental temperature dependence.

4.7 Superconductivity
BCS superconductivity is phonon mediated pairing of electrons. Electrons are negatively charged,
so normally they wouldn’t pair up, but experimentally, in superconductors, we see them pairing
up. When paired, they are no longer fermions, and they can fall into the same state. How do we
get them to pair? Suppose we have positively charged ions at the lattice sites, and we have an
electron flying through. The ions become slightly attracted to the electron as it moves through, and
that leaves a wake. This is a distortion of the lattice, which is a phonon. This wake generates a
concentration of positive charges, which in turn attracts another electron. This then overcomes the
Coulombic interaction, and gives us our electron pair. Phonons go as ω =

√
c
m , and thus the highest

energy is ℏωD, which is proportional to
√

c
m . This tells us that the superconducting transition

temperature TC should scale inversely with m. This is why the first thing people do when a new
superconductor is discovered is looking at isotopes.

4.8 Anharmonic Phonon Effects
So far, we have been working with the harmonic oscillator model, the potential is just a quadratic
term. In this case, it is only valid for small oscillations, we assume that the atom doesn’t oscillate
far out of the well, and we assume the well looks like a quadratic well. Recall that we obtained this
via a Taylor expansion:

U(r) = U(r0) + dU

dr

∣∣
r0

(r − r0) + 1
2
d2U

dr2
∣∣
r0

(r − r0)2 + . . .

Where the second term is 0, and thus we have a linear term and a quadratic term. Suppose we now
look at the next term:

U(r) = U(r0) + 1
2
d2U

dr2
∣∣
r0

(r − r0)2 + 1
3!
d3U

dr3
∣∣
r0

(r − r0)3 + . . .

Thus we have that

U(r) = Constant + 1
2c(r − r0)2 + 1

6g(r − r0)3

Where g is a constant, and is negative (based on the shape of the potential).

4.8.1 Thermal Expansion

Let us now look at what the anharmonic term gives us, and we will see that it provides the process
behind thermal expansion. For the pure quadratic oscillator, at low temperatures, the atoms oscillate
within the confines of the well, and at higher temperatures, the atoms oscillate over longer and
longer ranges. Since we have a quadratic curve, the range of the oscillations is always symmetric,
and we see that the midpoint of the oscillations will always remain the same, we see no thermal
expansion effects as temperature increases. Let us now look at the model with the anharmonic
term. If we increase the temperature, we increase the range of oscillations, and we see that, since
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the potential is not symmetric, the median position shifts as the temperature changes, it shifts to
the right as temperature increases. This provides a visual explanation of why we obtain thermal
expansion from the introduction of the anharmonic term, the average displacement between atoms
increases.

Now let us do a more mathematical explanation. The average displacement at a particular
temperature is given by a statistical average:

⟨r⟩ =
´
rP (r) dr´
P (r) dr

Where P (r) is the probability of finding the displacement to be r. Skipping the computation and
displaying the result, we have that

⟨r⟩
r0

= 1 + α∆T

Where ∆T is the change in temperature, and α is the thermal expansion coefficient :

α = 1
r0

∂ ⟨r⟩
∂T

We can also express α in terms of the constants c and g from the definition of U(r):

α = A|g|
c2

Where A is another constant. Based on experimental values, we see that smaller α (and therefore
larger c) means that a material is harder (Diamond has a small value of α, while aluminum has a
large value of α).

4.8.2 Thermal Conductivity

Let us now look at what the anharmonic term gives us in terms of explaining thermal conductivity
(for electrical insulators). Thermal conductivity is a measure of how well a material transmits
heat. For example, suppose we have a rod of material, and one end is being heated up via a flame,
and the other end is not being heated. The thermal conductivity provides a measure for how the
temperature on the unheated end will change, heat begins to spread to the cold end.

Let us look at a rod of material where the left end is at temperature T1, and the right end is at
temperature T2, where T1 > T2 and the temperatures are fixed. We see that heat will always transfer
from the high temperature end to the low temperature end.

We can describe the flux of the thermal energy per unit area, per unit time:

JU = −κdT
dx

Where κ is the thermal conductivity coefficient, and dT
dx is the temperature gradient across the

material. κ can be fully described using kinetic theory. For an insulator:

κ = 1
3cvl
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Where c is the heat capacity, v is the phonon velocity, and l is the mean free path, the distance
between phonon scattering events (can be thought of as the distance a phonon travels between
striking another phonon, where we consider the phonon to be a particle).

So what is the relationship between the anharmonic terms and thermal conductivity? Using QM,
we can relate the anharmonicity to the mean free path. The anharmonic term is a perturbation
to the harmonic oscillator Hamiltonian. The perturbation causes transitions between the original
energy eigenstates, and these transitions are where the phonon scattering takes place. The key
process is known as the 3 phonon process, where we have 2 phonons that interact, and we see 1
phonon as output. There are 2 different types of 3 phonon processes, which have slightly different
momentum conservation. The first kind of 3 phonon process is known as the normal process:

k1 + k2 = k3

Where ki is the momentum of the ith phonon. The second type of process is called the Umklapp
process:

k1 + k2 = k3 + G

In the normal process, the phonon wave vector is conserved, and in the Umklapp process, we have
to take into account the G vector that we saw before when discussing phonon momentum. This
Umklapp process affects the mean free path, because l ∝ 1

Number of Umklapp Phonons .

Where does the G come from? In the normal process (often denoted N process), the phonon
momentum vectors of the first two phonons sum to exactly the resultant phonon’s momentum, we
have standard collision momentum and energy conservation, no loss of momentum or energy. In
the Umklapp process (often denoted U process), the resultant phonon momentum is different than
the sum of the momenta of the first two phonons, by a factor of G. What is happening is that
the sum of the phonon momenta k1 + k2 is going outside of the boundaries of the first Brillouin
zone, and so G works to keep the phonon inside the zone. If k1 + k2 remains inside the BZ, then G
will be 0. Our final conclusion is that the Umklapp phonon reduces the mean free path, since it
restricts phonons to the first Brillouin zone. Thus it reduces κ, and therefore it reduces the thermal
conductivity.

5 Free Electron Model of Metals
To begin, we will first look at the classical model of metals, and then we will proceed to a quantum
mechanical treatment of metals. The behaviour of electrons in solids is the basis for electrical devices.
Electronics didn’t exist 100 years ago, QM is essential for understanding electrical properties.

The Drude Model/Theory was established around 1900, and is the basic classical model for solids.
In 1897, JJ Thomson discovered electrons, and the basic picture was that electrons together acted
like a classical gas of particles, bouncing around. Thomson correctly figured out that the positive
ions were heavy, and were fixed in position. This is a very unusual gas, the density is very high, 1022

to 1023 electrons per cubic centimeter, rather than typical real gases, which have densities around
1019 particles per cubic centimeter. This density is high enough that QM becomes necessary. Based
on this simple idea, combined with classical kinetic theory and statistical physics, many predictions
can be made, some of which are correct (Ohm’s Law is predicted correctly), and some of which are
incorrect. Ohm’s Law in this gas model is written as

J = σE
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Where J is the current density, E is the electric field, and σ = ne2τ
m is the conductivity, where τ is

the collision time between scattering of electrons and n is the carrier density. One prediction that
failes is the heat capacity due to electrons:

U element
thermal, classical = 3

2NkBT → CV = 3
2NkB

Where we have the same problem as before, this says that all materials have the same heat capacity,
which we know to be physically untrue. In real materials, there is a linear relationship with
temperature:

Celectron
V = γT

Where γ is a constant.

In order to resolve the discrepancies, QM was applied, where metals are treated as free electron
Fermi gases. We make several assumptions:

1. Electrons must be treated as QM entities.

2. Neglect interactions between electrons.

3. Ignore presence of ions (for now).

4. There is an average collision time τ .

The key questions are, how do we find electronic properties using quantum mechanics? The way we
proceed is to note that some things are the “same” as what we did for phonons, but many things
are vastly different, for example, phonons are bosons while electrons are fermions. To begin, we
determine the allowed quantum states for electrons. We then will determine the allowed energy
levels, and then the density of states of electrons, and then the occupancy of the states.

The Hamiltonian for this system is of a particle in a box with side length L. If we disregard
interaction between electrons, we have that

H =
N∑
i

Hi

Where we have no potential acting on the particles, so Hi = p2
i

2m . Thus we have that

H =
N∑
i

p2
i

2m

Every electron will have that same term. Thus, all we have to do is to solve the Schrodinger equation
for a single particle:

Ĥi = p2
i

2m

= − ℏ2

2m∇2
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As usual, we guess the solution for the single-particle wavefunction:

ψ = Aeik·r

= ψk(r)

In this case, k is the electron wavevector, and |k| = k = 2π
λ . ℏk is the electron momentum, and A is

a normalization constant such that ˆ
Volume

|ψ|2 d3r = 1

This integral just tells us that the electron must be somewhere in the box, and thus

A = 1√
L3

Now we need to find the allowed values of k. Let us assume periodic boundary conditions. If we do
this, we end up with

eikxL = eikyL = eikzL = 1

And thus we have that

kx = 2π
L
nx

ky = 2π
L
ny

kz = 2π
L
nz

Where the ns can take on values 0,±1,±2, . . . . Note that there is no bound on the values of the ns,
since we are not confined to the first Brillouin zone. In general, we can express this as a vector:

k = 2π
L

n

We can plot allowed values in k space (as a 3 dimensional plot), and we see that we have an allowed
value at every point where all 3 values are integers, and the distance between allowed values is 2π

L

in each direction. We have 1 allowed value of k for every
(2π

L

)3 chunk of volume in k space. For
each of these points, we can fit 2 electrons, one with spin up and one with spin down. Thus the
density of states in 3 dimensions is given by

D(k) = 2(2π
L

)3

Now let us compute the allowed energies, which we can do by going back to the Schrodinger equation:

Ĥψk = Ekψk

− ℏ2

2m∇2ψk = Ekψk

− ℏ2

2m∇2
î
Aeik·r

ó
= EkAe

ik·r
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We can then apply the Laplacian to the exponential:

ℏ2k2

2m
1√
L3
eik·r = Ek

1√
L3
eik·r

Ek = ℏ2|k|2

2m − ℏ2

2m

Å2π
L

ã2 (
n2

x + n2
y + n2

z

)
Up next, we need to find the density of states in energy space:

D(E) dE = D(E)∆E

This is the number of allowed states with energy between E and E + ∆E. This includes all allowed
k values which fit in this range, for spin. Previously, we did the conversion from D(k) to D(ω), and
now we are doing the conversion from D(k) to D(E):

D(E)∆(E) = D(k)
= D(k)4πk2∆k

= 2(2π
L

)3 4πk2∆k

Thus we have that

D(E) = 2
Å
L

2π

ã3
4πk2

Å∆k
∆E

ã
Now noting that E = ℏ2k2

2m , we can compute dk
dE :

dk

dE
=
…

m

2Eℏ2

Inserting this, we have that

D(E) = L3m

π2ℏ3

√
2mE

Now looking at E versus k, we see that we have a parabolic dispersion. Starting at T = 0, the
electrons fill the lowest energy states. We define the Fermi energy EF to be the energy of the
highest energy electron. The electrons fill up the k space from the origin up to k = kF , the Fermi
wavevector. We can compute the number of electrons:

Ne =
ˆ Ef

0
D(E) dE

=
ˆ EF

0

L3

2π2

Å2m
ℏ2

ã3/2
E1/2 dE

= L3

2π2

Å2m
ℏ2

ã3/2
E

3/2
F
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Rewriting this to solve for the Fermi energy:

EF = ℏ2

2m

ï
3π2N3

L3

ò2/3

This is sometimes also written in terms of the electron concentation, ne, where ne = Ne
L3 . We can

also write out the Fermi wavevector:

kF =
(
3π2ne

)1/3

We also define the Fermi velocity:

vF = ℏkF

m

And the Fermi temperature:

TF = EF

kB

The average number of electrons in a state is known as the occupancy of the state, and is going to
be anywhere from 0 to 1. This is governed by the Fermi-Dirac distribution, and depends on the
energy of the state, as well as the temperature. Recall that for phonons, the Planck distribution is

⟨nω⟩ = 1
eℏω/kBT − 1

For electrons/Fermions, we have the Fermi-Dirac distribution:

f(E) = 1

e
E−µ
kBT + 1

where we have defined the chemical potential, µ. f(E) tells us the average number of electrons in
the state with energy E. At T = 0, if E > µ, then this distribution states that the average number
of electrons is 0. On the other hand, at T = 0, if E < µ, the distribution states that we will have 1
electron on average. If we plot this, this looks like a step function. Interestingly, if we increase the
temperature, we “smear” the jump from filled to empty, it is less a step function, and more of a
transition. It’s also interesting to note that the width of the “smeared” region is kBT .

Now what is the chemical potential? For all intents and purposes, µ = EF , since for most
technologically relevant temperatures, this is true. Suppose we are at T = 0, and all states up to µ
are filled. If we add another electron, it will require at least energy µ to be added. There will be a
charge (increase) in energy in this case:

dU = µdN

The change in energy is the chemical potential times the number of added electrons. From this, we
have that

dU

dN
= µ
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Which is what we see in statistical mechanics.

We can also find the number of electrons in another way:

Ne =
ˆ ∞

0
D(E)f(E) dE

At T = 0, we can rewrite this:

Ne =
ˆ µ

0
D(E) dE

since f(E) = 1 up until E = µ, and is 0 after E = µ. Doing this integral out, we find that

Ne = L3

2π2

Å2m
ℏ2

ã3/2 2
3µ

3/2

Which can be rewritten:

µ = ℏ2

2m
(
3π2ne

)2/3

What we mean by the first definition of µ is that, for most metals/materials, µ ≈ EF up to really
high temperatures.

Now let us consider the heat capacity of the free electron gas. We can write out the total energy of
the free electron gas:

U =
ˆ ∞

0
ED(E)f(E) dE

We can graphically determine what the change in energy will be:

∆U ∝ D(EF )(kBT )2

Taking the derivative to obtain the heat capacity:

CV = 2D(EF )k2
BT

= γT

This is the correct dependence on temperature.

5.1 Electrical Conductivity
We have that the current density is related to the electron density n nand the velocity, v:

J = nev

We can rewrite this using the definition of momentum:

J = −neℏk

m
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In the presence of an electric field, F = −eE, and thus by Newton’s Second Law, dp
dt = ℏdk

dt . Thus
we have that

dk = −eE

ℏ
dt

Integrating this, we have that

k(t) = k(0) − eEt

ℏ
Now putting this together with J :

J = −ne2τ

m
E

= σE

Where σ = ne2τ
m is the conductivity.

Suppose we look at the Fermi surface, and we apply an electric field. We have a shift in the
wavevectpr ∆k = − eEτ

ℏ . If the electric field is the in the +x direction, then the Fermi surface
starts to shift in the −kx direction. There are also collisions/scattering of electrons, which happen
every τ period. This scattering has the effect of putting every electron back to equilibrium, where
they originally were. We have two things at work here, the electric field, which tries to shift the
Fermi surface to the side, and the collisions, which try to knock the electrons back to their original
positions.

But what causes the scattering? The main mechanisms of scattering are phonons and defects. These
each have a collision time, τL for lattice phonons, and τi for defects or impurities. As a result of
these 2 differrent collision times, there is a total collision time:

1
τ

= 1
τL

+ 1
τi

We also define the resistivity:

ρ = 1
σ

Which can be written as

ρ = m

ne2τ

= m

ne2
1
τL

+ m

ne2
1
τi

= ρL + ρi

This is Mathiessen’s Rule, the total resistivity is the sum of resistivity components, which arise from
different scattering times.

Note that ρL has strong temperature dependence, and ρi is temperature independent.

The free electron model of a metal can explain many things, but there are discrepancies with
experimental observations. We had to introduce scattering, and the free electron model doesn’t
explain why some materials are insulators and some are conductors. The model also doesn’t explain
superconductivity and ferromagnetism. The model also doesn’t explain any optical properties, such
as why metals are colored the way they are (why is copper red, why is gold gold, why is silver
silver?). The problem with the free electron picture is that we largely ignore the presence of positive
ions.
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6 Band Theory
Now let us look at what happens when electrons interact with the lattice. The key finding is that
there will be energy ranges where electrons will not be allowed to exist. This is what we call a band
gap. First let us look at a simple picture of the formation of bands and band gaps, as atoms come
together to form a solid.

Consider 1 atom, a Li atom. The electronic configuration of this atom is 1 S2 2 S1. Suppose we bring
N of these atoms together, where N is a very large number. When we bring these together, we
form the Lithium metal. What happens is that the energy levels get split into N levels, so that the
electrons don’t violate the Pauli Exclusion Principle. As the number of electrons approaches a very
large number like N , we obtain a continuous spectrum, or band.

This continuous band forms because N is very large, and only half of the band is filled, from the
lowest energy part. Because of this, we know it is a metal. We started with discrete quantized
energy levels of individual atoms, and in the process of bringing atoms together, each level has
now split and broadened to be a band of energy regions where electrons can occupy states. This
happens to all of the energy levels, and the regions where there are no bands are known as band
gaps. This explanation rises from the quantum mechanical nature of electrons, but this isn’t really
a solid explanation.

6.1 Second Explanation
The second explanation of the band gap structure is based on Bragg diffraction of electrons, we will
apply the same condition as X-ray diffraction to the electrons. The simple qualitative quantum
mechanical explanation of band gaps starts with a 1D lattice. This is already a strong departure
from the free electron model. The lattice structure produces a periodic variation in the potential
energy, as the electrons like to be near the positive ions that are at the lattice points. This potential
can be treated as a perturbation of the free electron Hamiltonian:

Ĥ = H0 +H ′

= p2

2m + U(x)

Recall that in the phonon case, adding the anharmonic perturbation caused scattering of phonons,
and something similar will happen here, where we have the scattering of electrons, terms and new
states form as a combination of old states. In general in QM, under the influence of a perturbation,
the original eigenstates are no longer the new eigenstates. However, in this case, it turns out that
everywhere other than the BZB, the eigenstates are about the same, and they only really vary from
the original states near the Brillouin Zone Boundary.

If k satisfies the Bragg condition, the new state is different from the old state, otherwise the new
state is approximately the old state. Now let us recall what the Bragg condition is when applied to
electrons. Previously, the Bragg condition was

k − k′ = G

In the case of X-rays, k was the incoming wavevector, and k′ was the outgoing wavevector, but in
this case, we have something different. In the case of electrons, k and k′ represent the wavevectors
of two electrons, and if the condition is met, the energy levels mix to form a new state. Let us
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choose k and k′ that satisfy this condition, k = π
a and k′ = −π

a . The mixing produces a linear
combination of the two states. Note that the two states are degenerate in energy:

Ek = ℏ2k2

2m = Ek′

From these 2 states, we get 2 new mixed states:

ψ+ = 1√
2

î
ψπ

a
+ ψ− π

a

ó
= 1√

2L
[ei π

a
x + e−i π

a
x]

=
…

2
L

cos
(π
a
x
)

ψ− = 1√
2

î
ψπ

a
− ψ− π

a

ó
= 1√

2L
[ei π

a
x − e−i π

a
x]

=
…

2
L
i sin

(π
a
x
)

Note that both of these states have equal amounts of rightward-travelling wave and leftward-travelling
waves. Therefore, these wavefunctions are then standing waves. Note that this is just like how
the phonons were unable to propagate past the BZB. In the phonon case, at the BZB, adjacent
atoms were oscillating against each other. Standing waves happen because waves happen to “fit” the
lattice and get stuck, much like resonance. Looking at the standing waves, they look very similar to
each other, and if we compare the two against the potential energy that we started with, which had
troughs right where the ions were, we see that the cosine solution fits into the lower energy regions
of the potential.

The sine solution places the electrons where the repulsive energy is maximized, which is high energy,
and is therefore a “bad” solution, unlike the cosine solution. We see that we started with two states
degenerate in energy, and due to the perturbation causing mixing, we ended up with two states
that are very different in energy. There are no other states which consist of these original ks, which
creates a gap between the two energies at k = ±π

a on the energy plot. The gap that is caused by
the splitting of the energies of the two states has no allowed states in between.

6.2 Bloch Theorem
Let us assume that we have a 1D system (the 3D case is very similar). Consider the potential energy
of an electron in a crystal, U(x). By the definition of crystal structure, U(x) must be periodic with
periodicity a (lattice spacing). In other words, the potential is invariant under translation:

U(x) = U(x+ na)

for all integer n.



PHYS431 Notes Hersh Kumar
Page 47

The Fourier Theorem states that any periodic function can be decomposed into sinusoidal functions
with wavevectors that are multiples of 2π

a . In this case, multiples of 2π
a are just multiples of G, the

reciprocal vectors, and thus we have that

U(x) =
∑
G

UGe
iGx

Where G = 2π
a n, for n = 0,±1,±2, . . . . Now shifting the potential over by a lattice spacing:

U(x+ a) =
∑
G

UGe
iG(x+a)

=
∑
G

UGe
iGxeiGa

Now due to translational invariance, we have that eiGa = 1, which checks out (since Ga = 2πn).
Now writing out the Hamiltonian, we have that

Ĥ = − ℏ2

2m
d2

dx2 + U(x)

Which we can insert into the Schrodinger equation:

− ℏ2

2m
d2ψ

dx2 + U(x)ψ = Eψ

We could guess eikx, but this is too simple, it is too close to the original solution (solution for the
equation without the potential term). We have introduced a perturbation, and as a result, we expect
to have some mixing of solutions to happen. As such, a good solution will be some combination of
the original solution:

ψ(x) =
∑

k

cke
ikx

Where k = 2π
L n, for all integer n. All we have to do now is find what ck is. Inserting our solution

into the Schrodinger equation:

∑
k

ck

ñ
ℏ2

2mk2eikx +
∑
G

UGe
iGxeikx

ô
= E

∑
k

cke
ikx

From here, we pick off the terms that have eikx, and match them. However, we also have an x
dependence in the eiGx. Let us look closer at this term:

→
∑

k

∑
G

ckUGe
iGxeikx

=
∑
G

∑
k

ckUGe
i(G+k)x

Now we note that k = 2π
L n, and G = 2π

a m, where n,m ∈ Z. The thing we note is that L = Na, and
thus is very large, which tells us that there are many more ks than there are Gs, and in fact, the Gs
are actually a subset of the values of k (which we intuitively already knew, the Gs are special cases
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of the wavevectors). In fact, G = 2π
a m = 2πNm

Na = 2π
L (Nm) = k, since N is just some integer. Now

using this as a substitution:

k′ = k +G

= 2π
L
n+ 2π

a
m

= 2π
L
n+ 2π

L
(Nm)

= 2π
L

(n+Nm)

= 2π
L
n′

Where we have defined n′ = n+Nm. thus we have that

→
∑
G

∑
k

ckUGe
i(G+k)x

=
∑
G

∑
k′

ck′−GUGe
ik′x

The next move is a little bit of a magic trick, we can actually get rid of the prime notations, since
the sum over k and a sum over k′ will account for the same things. Thus, we have that

=
∑
G

∑
k

ck−GUGe
ikx

=
∑

k

∑
G

ck−GUGe
ikx

Now we’re home free, we can look at the Schrodinger equation and sort things out term by term:

∑
k

ck

ï
ℏ2

2mk2eikx

ò
+

∑
k

eikx

ñ∑
G

ck−GUG

ô
= E

∑
k

cke
ikx

Now we have a summation over k with an eikx term for each of the terms in our equation. Equating
them term by term, for the same eikx, we can drop the sums over k, as well as the eikx:

ck
ℏ2

2mk2 +
∑
G

ck−GUG = Eck

Which holds true for each k. This is known as the central equation. Note that this tells us how the
mixing occurs, the state represented by k will be mixed with the state given by k − G. In other
words, if we had two states that are mixing, k1 and k2, then the difference must be G:

k1 − k2 = G

Which is just the Bragg Law.

Now we can state the Bloch Theorem:
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Theorem 6.1. Bloch Theorem. Given a periodic potential U(x) =
∑

G UGe
iGx, with G = 2π

a n, the
wavefunction which solves Schrodinger’s equation is of the form

ψk =
∑
G

ck−Ge
i(k−G)x

Which is a sum of waves with wavevectors differing by Gs.

Let’s now apply the central equation in some specific cases.

For the free electron, U = 0, and thus UG = 0 for all G. The central equation then states that

ck
ℏ2k2

2m = Eck

E = ℏ2k2

2m
Which is what we expect.

In the case of a periodic potential of the form U(x) = −U0 cos
(2π

a x
)
, we find that uG = −U0

2 for
G = ±2π

a , and 0 for all other Gs. Now looking at the boundaries for k = ±π
a , we have that

ck
ℏ2

2mk2 + ck−G1UG1 + ck−G2UG2 = Eck

Where G1 = 2π
a and G2 = −2π

a . This will be two equations, one for k = π
a , and another for −π

a :

cπ
a

ℏ2

2m

(π
a

)2
+ c− π

a
U 2π

a
+ c 3π

a
U− 2π

a
= Ecπ

a

c− π
a

ℏ2

2m

(
−π

a

)2
+ c 3π

a
U 2π

a
+ cπ

a
U− 2π

a
= Ec− π

a

We see that we now need to compute c 3π
a

and c− 3π
a

, but it turns out that, due to the energy difference
between these states, we can actually get rid of those mixings.

In the extended zone scheme, we have that the band gaps separate bands, and each Brillouin Zone
contains one band. Each state is uniquely defined by k. In the reduced zone scheme, which is the
most common, we “fold” in the bands outside of the first Brillouin zone, to make a more compact
representation. Each state is now defined by k and the band number. This is convenient because all
bands are now in the first Brillouin Zone.

Now lets think about the 3 dimensional case. For the free electron case, the energy is given by

E = ℏ2k2

2m

Where k2 = k2
x + k2

y + k2
z . An equation for an equi-energy contour line (surface of constant energy)

will be spherical. This means that in k space, all of the states on the same curve are degenerate in
energy. Each curve is a sphere with radius k =

»
2mE
ℏ2 .

Now let us include interaction between electrons and the lattice. Previously (in the 1D case), we
saw that the depth of the potential is the size of the band gap. As a result, the energies of the
electrons got modified, for k near BZBs. We saw that in the 1D case, when we had a gap, near
the gap, to the left, the energy got pushed down, and to the right of the boundary, the energy got



PHYS431 Notes Hersh Kumar
Page 50

pushed up. In other words, for k < kBZB, E(k) is reduced, and for k > kBZB, E(k) is increased,
where we are discussing values of k that are close to kBZB.

We can think of the BZB in 2D, which is in the form of a square, and at the boundaries of the
square, the states have decreased energies, and directly outside the boundary of the square, the
states have their energies increased.

The states that are near the center of the zone are not affected, so we still have spherical/circular
contours. However, the equi-energy surfaces that are closer to the boundaries have segments that
are closer to the boundary, and segments that are further. The segments that are further (the
ones that are near the corners) will remain unaffected, while those that are closest to the boundary
(sides), will get closer to the boundary (compensating for the decrease in energy). Essentially, that
part of the curve has to “go further” in order to maintain the energy of the curve. Note that there
are now discontinuities in some of these curves, since there existed shells that would intersect the
BZB. This is the emergence of the band gaps.

In the free electron case, the location of the energy contours was given by k =
»

2mE
ℏ2 , but now the

distance is different for different directions, we no longer have spherical symmetry.

Let us look at how electrons fill up states. Consider a 3D crystal with Np primitive cells. Suppose
there are m atoms per primitive cell, and there are zv valence electrons, the electrons that are
sittings in the outermost shell, and the only electrons that can get stripped, and participate in
conduction. Based on this setup, there are zvmNp valence electrons. Let us now consider the
number of states.

In 1D, the acceptable values for k are between −π
a and π

a for the first zone, and recall that the ks
that satisfy the periodic boundary conditions are 2π

L n, where n ∈ Z. We have that 2π
L n = π

a , but
L = Na, so

2π
L
n = nπ

L

Thus for one side, we can go from n = 0 to n = N
2 . However, this is one side, so we take into

account symmetry and double it, and then we have to take into account spin, so we double it again.
Each BZB therefore gives us 2N states. Generalizing to 3D crystals, there are 2Np states in each
Brillouin zone. Note that the number of states is not affected by zv or m, it is solely reliant on Np.

Thus we have that the number of states is proportional to just the volume of the Brillouin zone,
since the density of states is constant. Recall that each Brillouin zone has the same volume, so thus
they have the same number of states.

6.3 Metals, Insulators, and Semiconductors
Now we can finally look at the question of why some objects are metals and why some are insulators,
as well as why some are semiconductors. At T = 0, all electron states up to E = EF are filled. The
order of filling of states is determined by the order of the energy of the states.

• A material is a metal if it has a partially filled band

• A material is an insulator if it has no partially filled bands
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In insulators, all bands are either completely filled or completely empty. Metals are materials with
“exposed” Fermi surface, the Fermi surface exists inside a band, so that electrons can pick up “small”
energies and see action (participate in electrical current). Semiconductors are insulators where the
band gap is small, so if we have enough energy, we can jump to the next band.

We can think of the bands as tanks of liquid, if a tank is full or empty, we can’t do anything to it,
but if its partially full, we see behavior at the boundary of the exposed liquid. When there is a
partially filled band, electrons at the Fermi surface can easily pick up small energy and participate
in transport/current.

How do we know if a material will be a metal or an insulator?

Each band has 2Np states. A material has zvmNp valence electrons. From this, we see that if zvm
is odd, we have a metal, whereas if zvm is even, we don’t necessarily have an insulator, because
energy levels can fill up out of order, so a new band can start to be filled before the previous one is
filled completely.

For example, Si is basically an insulator, but Mg, Ca, and Ba are metallic. If we look at Na, which
has electronic structure 1 S2 2 S2 2 P6 3 S1. We see that we have zv = 1. For a monatomic crystal,
we have that zvm = 1, there are Np electrons and 2Np states. Here we have only enough electrons
to fill half of a band, so this is a metal. For Be, it turns out that states in the second Brillouin
Zone have lower energy than some states in the first Brillouin zone, so those fill up first, and so we
have partially filled bands, meaning that we have a metal. Thus the lesson is that only detailed
investigation of the Fermi surface can tell us whether a divalent material is an insulator or not. There
are different methods for mapping out the Fermi surface, such as angle-resolved photo emission.

We often take the free electron energy and write it in terms of the mass:

m = ℏ2

∂2E
∂k2

And in the non-free electron case, where we add in interactions, we no longer have the same energy,
but we can still consider the effect mass, m∗:

m∗ = ℏ2

∂2E
∂k2

Note that this second derivative, ∂2E
∂k2 is the curvature of E(k), and thus when the equi-energy

curves are very curved, the electrons have more interaction, and when they are less curved, the
electrons have lighter interaction. Also note that we can have negative effective mass, m∗ < 0,
and these particles move in opposite directions as normal electrons, these are holes. In fact, this
is consistent with the idea of electrons “jumping” to the next band, because this is equivalent to
having a negative curvature.

6.4 Silicon Doping
Let us now look at Si, the most important electronic material. Silicon has 1 S2 2 S2 2 P2 3 S2 3 P2,
where the last two hybridize to form 4 SP3 states, like Carbon. Silicon likes to form 4 bonds
(according to the octet rule), which are equivalent to tetrahedral coordinates and bonding, forming
a diamond structure, which is like FCC with four extra atoms on the inside. Si has a valence of 4+,
so lets do doping to make it conducting. There is donor doping (giving an electron to it), so we use
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As, which has a valence of 5+, it has 5 electrons. that can be stripped. We substitute the central Si
for As, which has an extra “leg”, which can be broken easily. The extra electron can be stripped
with 49 meV, so the addition of the Arsenic has created a new state in the band gap, if we add 49
meV, we can jump to the next band.

There is also acceptor doping with B, which has valence 3, one less than Si. In this case, when we
substitute it in, it is missing a leg, and with a little bit of energy, we can move an electron from
elsewhere to fill that leg, or rather we say that the hole moves from the B to elsewhere. Instead of a
new state being created at the bottom of the band above, we create a state above the lower band.
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