
PHYS410 Notes (Fall 2022)
Hersh Kumar

Contents
1 Advanced Applications of Newtonian Mechanics 3

1.1 Newton’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 2D Motion with Linear Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Falling Motion with Quadratic Drag . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Forces on Moving Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Rocketry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.1 Kepler’s Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2 Multiple Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.3 Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.4 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Work-Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8.1 Weakly Damped Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8.2 Overdamped Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8.3 Driven Harmonic Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Formulations of Mechanics 17
2.1 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Lagrange Multiplier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Central Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Orbits in Gravitational Potentials . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Phase Space Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Noninertial Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Rotating reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Elasticity 35

4 Solid Body Rotation 38
4.1 Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Lamina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



PHYS410 Notes (Fall 2022) Hersh Kumar
Page 2

4.3 General Rotational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Free Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Chaos 43



PHYS410 Notes (Fall 2022) Hersh Kumar
Page 3

1 Advanced Applications of Newtonian Mechanics
1.1 Newton’s Second Law

Newtonian mechanics is centered around forces. His experimentally based understanding of the
world generated a model about forces, but there are limits, which we can surpass if we look at things
like Lagrangian mechanics. Newton’s Second Law can be written in multiple different ways:

Fnet = dp

dt
Fnet = ma Fnet = m

d2x

dt2

Perhaps the most general way of writing it would be

ẍ = 1
m

Fnet

What should we do to find the resulting motion if the force depends on nothing, if it is constant?

F = C

In this case, we have constant acceleration, where we can solve for the acceleration and then integrate
twice to get x. We get two arbitrary constants of integration from this, which can be determined
from the initial conditions (or other conditions).

If the force depends on time, F = f(t), we have that ẍ = 1
mf(t). Once again, we integrate twice

with respect to time, and once again have two arbitrary constants.

If the force depends on velocity, we have that F = g(v). We can use the fact that v̇ = 1
mg(v), and

we can rewrite this as dv
dt = 1

mg(v), which we can solve via separation of variables:∫
dv

g(v) = 1
m
t+A

From here, we have some function of v on the left, and we can then solve for v(t), and then integrate
once more, to get x(t). This will also have two constants of integration.

If the force is a function of position, F = h(x), we can make an educated guess for the form of the
solution. Another method is to multiply both sides by ẋ:

ẍ = h(x)
m

→ ẍẋ
1
m
h(x)ẋ

Now we integrate both sides: ∫
ẍẋ dx =

∫ 1
m
ẋh(x) dt

Now using the fact that ẍ = dẋ and dx
dt dt = dx, we are left with

1
2 ẋ

2 = 1
m

∫
h(x) dx+ C

Let’s do some problems. If the force is given by F (t) = A cos(ωt), find x(t). We can set up Newton’s
Second Law:

A cos(ωt) = mẍ
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We can move the mass over:
ẍ = A

m
cos(ωt)

We can then integrate twice:
ẋ = A

mω
sin(ωt) + C

x = − A

mω2 cos(ωt) + Ct+D

If we wanted to connect initial conditions, typically given as x0 and v0, we could plug in t = 0 into
our solution, and then solve for the constants of integration (x(0) = x0 and ẋ(0) = v0). To do this
for our problem:

x(0) = − A

mω2 +D = x0 → D = x0 + A

mω2

We can also take the derivative:
ẋ = A

mω
sin(ωt) + C

ẋ(0) = C = v0

This tells us that the final solution is given by

x(t) = − A

mω2 cos(ωt) + v0t+ x0 + A

mω2

Another way to do this is to do definite integrals from the initial value to the current value.

We begin with Newton’s Second Law:

m
dv

dt
= A cos(ωt)

Integrating: ∫
m
dv

dt
dt =

∫
A cos(ωt) dt

Abusing notation a bit, we can cancel out the dt in the left integral:∫ v

v0
mdv =

∫ t

0
A cos(ωt) dt

This integral gives us the result
mv

∣∣v
v0

= A

ω
sin(ωt)

∣∣t
0

mv −mv0 = A

ω
sin(ωt) − 0

v(t) = v0 + A

mω
sin(ωt)

We can now do the second integral:∫ x

x0
dx =

∫ t

0

ï
v0 + A

mω
sin(ωt)

ò
dt

x− x0 =
ï
v0t− A

mω2 cos(ωt)
ò

−
ï
0 − A

mω2

ò
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Solving for x:
x(t) = x0 + v0t− A

mω2 cos(ωt) + A

mω2

Which is the same result we found using the constants of integration.

We can do another problem as well. Suppose we have a force that is a function of velocity, F (v) = D
v .

We can write out Newton’s Second Law:

m
dv

dt
= D

v
→ mv dv = Ddt

Where we have separated variables. We can then integrate both sides:∫
mv dv =

∫
Ddt → 1

2mv
2 = Dt+ C

We can solve this for v(t), where we have implicitly redefined C:

v(t) =
…

2Dt
m

+ C

We could have also done this using the second approach:∫ v

v0
v dv =

∫ t

0

D

m
dt

Now let us do a problem where F (x) = Cx. We can write out Newton’s Second Law:

mẍ = Cx

This diffeq is second order, linear, homogeneous. We assume a solution of the form ert, for some r.
Note that the two conditions that allow us to do this are the fact that the equation is linear and
homogeneous. Because of these two conditions, we can also leverage the property of superposition
of solutions. We can insert our solution into the diffeq:

mr2ert = Cert

We can then cancel out the erts, because they can never be 0, so we are left with the quadratic:

mr2 = C

Solving for r, we have that r2 = C
m , giving the roots r = ±

»
C
m . This gives us two solutions, which

can be put together to get the general solution:

x(t) = Ae
»

C
m
t +Be−

»
C
m

1.2 Drag
We have two regimes of drag that we will focus on. We have linear (viscous) grad, where |Fd| = bv,
and quadratic (turbulent) drag, where |Fb| = cv2. To get the sign right, the drag will always be
opposite the direction of motion, Fd = −bv in the linear case, and in the quadratic case we have
either −cv2 or cv2, depending on the direction of v.
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Let us talk about where these come from. If we have viscous drag, we have an object in a fluid,
and the fluid has to move around the object, (pictorially they’re called streamlines), the object
warps the streamlines. The streamlines don’t vary over time for viscous drag, i.e we have laminar
flow. The drag force comes from the viscosity of the fluid, which is usually quantified by taking two
parallel plates, each with area A. The top one moves with velocity v. The fluid in between the two
plates will move, with fluid closer to the stationary plate moving slower than the speed at which
fluid closer to the moving plate. This variation of the fluid speeds generates what’s known as the
gradient of fluid velocity, which is essentially dv

dy , where y represents the distance from the bottom
plate. In this case, the drag force is given by

Fdrag = A
dv

dy
η

Where through dimensional analysis we find that η has units of N ·s
m2 = Pa · s, it is measured in

Pascal seconds. This is also sometimes known as "poise".

If we go back to the geometry of an object in a fluid flow, we have a similar derivation of the drag
force. In the case of a sphere:

Fdrag = Asphere

Å
dv

dy

ã
average

η = πD2
Å3v
D

ã
η = 3πDvη

Where the area is the surface area of the sphere. This is known as Stokes’ Law, and is restricted to
a sphere. From this, we have our bv, where b = 3πDη for a sphere.

For turbulent drag, we have a sort of handwavy argument. If we have an object moving through a
fluid at some v, the drag force shold be proportional to the amount of fluid you have to move out of
the way, which will be given by the density of the fluid times the cross-sectional area of the object,
times the speed. We also need a factor of the speed to determine how fast we need to move the
material:

Fdrag ∝ ρAv × v

For a sphere, Fdrag = 1
4ρAv

2 =
(1

2Cd
)
ρAv2, where Cd is known as the drag coefficient, and depends

on the shape of the object.

1.2.1 2D Motion with Linear Drag

Let us go about solving the motion for linear drag. Let us for this calculation, assume that it is 1
dimensional motion, and upwards is positive. Since for linear drag the x and y components separate,
in this case we can only look at the y case, knowing that the x case is independent.

Note that we cannot separate the quadratic drag case into 2 1D equations of motion.

We can look at the x component with the linear drag:

v̇x = Fd
m

= − b

m
vx

We define τ = m
b , which gives us that

v̇x = −1
τ
vx

From this, we guess that vx = Ae−t/τ . If we insert initial conditions, we find that A = v0, and we
see that as t → ∞, we see that vx → 0, and x → C, where C is some constant.
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Now let us look at the y direction, where we have a more complicated diffeq. We have that

v̇y = −1
τ
vy − g = −1

τ
(vy + gτ)

There are two ways to solve this. One way is to substitute to get rid of the constant term, where we
define some u(t) = vy(t) + gτ . We then see that u̇ = v̇y, and thus a solution to the equation for u is
a solution to vy. We can then solve the differential equation in terms of u, and then convert back to
vy(t). This would give us that

vy(t) = (v0 + gτ)e−t/τ − gτ

The second way to solve this is to separate variables and integrate:

dvy
vy + gτ

= −1
τ
dt

∫ v

v0

dvy
vY + gτ

=
∫ t

0
−1
τ
dt

ln(vy + gτ)
∣∣v
v0

= − t

τ

Now we can exponentiate both sides:
vy + gτ

v0 + gτ
= e−t/τ

Now we can solve for vy:
vy = (v0 + gτ)e−t/τ − gτ

Which is the same result that we found using the other method.

We can now integrate this to get the result for y(t):

y(t) = −(v0τ + gτ2)e−t/τ − gτt+ C

Let us now look at the limiting cases. At t = 0, we see that vy(0) = v0, as expected. We would then
choose C such that y(0) = 0. As t → ∞, the velocity approaches −gτ . This is the terminal velocity
of the object:

vterminal = −gτ

Note that the negative here is just because of our coordinate system, normally we just define the
terminal speed, which would be gτ .

1.2.2 Falling Motion with Quadratic Drag

Our drag force vector can be given by Fd = −cvv, and the magnitude of the drag force will be cv2
y .

If we write out the differential equation:

v̇y = c

m
v2
y − g

Note that we can already determine what the terminal velocity is, by setting the acceleration to 0,
and we find that vter =

»
mg
c . We can rewrite our differential equation:

v̇y = −g
Ç

1 −
v2
y

v2
ter

å
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We can again solve this via separation of variables:∫
dvy

1 − v2
y

v2
ter

= −g
∫
dt

We can define u = − vy

vter
, which will make the separation of variables will have the setup:

v2
ter

∫
v0

du

1 − u2 = −g
∫
dt

This is a lookup integral, and it spits out the hyperbolic arctangent of u:

v2
ter arctanh(u)

∣∣v
v0

= −gt

We end up with

y(t) = −v2
ter
g

ln
ï
cosh

Å
gt

vter

ãò
1.3 Forces on Moving Charged Particles

The force on a moving charged particle will be the electrostatic force plus the Lorentz force:

F = qE + qv × B

To start with, we’ll assume that E = 0. The consequences of the cross product are that the direction
of the force will be at right angles to the current velocity:

v · v̇ = 0

This implies that the magnetic force doesn’t change the speed of the particle, but does change the
direction.

Let us assume that B = Bẑ. We can now write Newton’s Second Law:

mv̇ = −qv × B = q(−vxBŷ + vyBx̂)

m(v̇xx̂+ v̇yŷ + v̇z ẑ) = qvyBx̂− qvxBŷ

From this, we can write this out component-wise:

mv̇x = qvyB mv̇y = −qvxB mv̇z = 0

Rewriting the two equations:
v̇x = qB

m
vy v̇y = −qB

m
vx

These are coupled first order differential equations. There are different ways to solve this. Taylor’s
method is to define a complex variable η = vx + ivy. This is a "complex velocity". The advantage of
this is that

η̇ = v̇x + iv̇y = qB

m
[vy − ivx] = −iqB

m
[vx + ivy] = −iqB

m
η

We can define ω = qB
m , and we then have that η = η0e

−iωt. This is a clockwise rotation in the
complex plane, with some initial complex velocity η0. From this solution, we can obtain vx and vy:

vx(t) = Re(η(t)) vy(t) = Im(η(t))
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This can be reduced to sines and cosines, as expected. We could then integrate this if we want to
solve for the position in both directions.

Another way to solve the original equation is to plug one equation into the other, and generate a
second order differential equation.

v̇x = ωvy → v̈x = ωv̇y → v̈x = −ω2vx

This is something that we recognize as an oscillator diffeq, with angular frequency
√
ω2 = ω. This

gets us the same result as the other method.

We can now ask what the radius of the circular motion will be:

R = |η0|
ω

= mv

qB

1.4 Collisions
When talking about collisions, we have that the total momentum vector, is conserved in a collision
(or really any interaction during which external forces are negligible). For a collision of two objects:

p1i + p2i = p1f + p2f

We can keep track of orthogonal components, and require them to be equal, before and after:

p1xi + p2xi = p1xf + p2xf

Or equivalently, ∆p1x = −∆p2x. The same thing holds for all coordinate directions. The neat thing
about this is that we can just compare before and after, the net change in momentum of each object.
We know that p = γmv, which is pretty much mv, as long as v ≪ c. We can also think of vector
equality graphically, where we are adding up the initial momentum vectors, and we need that sum
to be the same as the sum of the final momentum vectors. When we mess with momentum triangles,
we often use the law of cosines and sines:

c2 = a2 + b2 − 2ab cos γ

where γ is the angle opposite c. The law of sines is

a

sinα = b

sin β = c

sin γ

These rules mean that if you know any 3 pieces of information, you can determine the other 3. Its
important to realize that we are dealing with momenta, not velocities. Because of this, we have to
add/remove a factor of m. This works equally well for elastic and inelastic collisions, momentum
conservation doesn’t care.
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1.5 Rocketry
Rocketry is an application of conservation of total momentum, where we have the rocket body and
the fuel, which decreases in mass, or is separated from the rocket body.

We have to now make a distinction between a rocket and a turbofan. Rockets exhaust mass behind
them to generate thrust, while turbofans burn fuel to spin fans that push against the ambient fluid
medium, generally air.

If we take a soda bottle, and fill it with some liquid nitrogen, and put a stopper in the hole, it will
build up pressure, and eventually eject the stopper, sending both the soda bottle and the stopper
flying.

Let us look at a general rocket. The total mass of the rocket and its fuel, spent and unspent, is
constant, m0. Let us keep track of the rocket body plus its unspent fuel, m(t). In a small time
interval dt, while the engine is spitting out exhaust with speed ve relative to the rocket body, the
momentum at the beginning of the time interval is mv. The momentum after the time interval is
(m+ dm)(v + dv) − dm(v − ve). We can expand this equation, and we have that mdv = −ve dm.
This gives us the relation that mv̇ = −veṁ, or v̇ = −ve

m ṁ. If the thrust is constant, we can integrate,
and we find that

v(t) = −ve [lnm− lnm0]

1.6 Angular Momentum
We will begin by thinking about a single particle, rather than a 3 dimensional rigid body. The
angular momentum and rotation of a single particle is more straight-forward:

ℓ = r × p

Where p is the linear momentum, mv.

We can compute the derivative of ℓ:

ℓ̇ = d

dt
(r × p) = ṙ × p + r × ṗ

Now noting that ṙ = v, which is colinear with p, and thus we are left with

ℓ̇ = r × ṗ = r × F

This is known as the torque:
ℓ̇ = r × F = Γ

This is Newton’s Second Law in angular form.

Let us do a quick review of computing cross products. Suppose we have two vectors a and b, and
the angle between them θ. Given these 3 characteristics, we can define the magnitude of the cross
product as

|a × b| = |a||b| sin θ

We can find the direction of the cross product via the right hand rule.

If instead we are given a and b written head to tail, and the projection of a in a direction
perpendicular to b, known as s. From this, we have that |a × b| = sb, and we can once again use
the right hand rule to compute the direction.
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Suppose that we were given the vectors in some coordinate system:

a = 2x̂+ 3ŷ + 5ẑ b = −x̂− 5ŷ + 6ẑ

We can use the determinant method:

a × b = det

Ñ
x̂ ŷ ẑ
2 3 5

−1 −5 6

é
Suppose we have a ball of mass m falling under gravity, with a position vector of r. We can compute
the angular momentum

ℓ = r ×mv

If we are given the distance from the origin in the x direction, known as s, we know that the
magnitude will be |ℓ| = m|v|s. Note that as the ball falls, the angular momentum will change, since
it relies on the velocity. However, we note that if we move the origin to right under the ball, the
angular momentum will be 0, and will remain 0 even as the ball falls, since the velocity and position
vectors are colinear. Thus we see that in angular dynamics, the choice of origin leads to subtleties
due to the cross products.

1.6.1 Kepler’s Second Law

Kepler’s Second Law states that the area swept out over some dt is the same for all points in an
orbit. This is equivalent to a statement of conservation of momentum. We have some position
vector in the orbit, r, and some tangential velocity v. In some amount of time dt, we sweep out a
triangle, one side length being r, and another being v dt. We can use a property of triangles that
states that the area is given by

A = 1
2 |a × b|

We can use this:
A = 1

2 |r × v dt| = 1
2m |r × p| dt

From this, we have that
dA

dt
= 1

2m |r × p| = |ℓ|
2m = C

Where C is some constant. This was first noticed empirically by Kepler, by looking through data.

1.6.2 Multiple Particles

For multiple particles, we define the total angular momentum to be the sum of the individual
angular momenta:

L =
∑
α

ℓα =
∑
α

rα × pα

We also note that the rate of change of the total angular momentum will be the total external
torque:

L̇ = Γext
We can write conservation of angular momentum as the claim that if Γext = 0, then L is constant, if
the internal forces obey Newton’s Third Law, and those forces are directed along the line connecting
the two objects (For example, magnetic forces can violate the strong form of Newton’s Third Law).
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1.6.3 Moment of Inertia

For a fixed axis of rotation, we define the moment of inertia:

I =
∑
α

mαr
2
α

Where rα is the distance from particle α to the axis. For a continuous system, we can convert this
to an integral:

I =
∫
r2 dm

Where dm = ρdV , turning the integral into

I =
∫
r2ρ dV

The moment of inertia can be used to find the angular momentum:

Lz = Iω

Where ω is the angular velocity. We can take the derivative of this:

L̇z = Iω̇ = Γz

We have some frictionless turntable, of mass M and radius R, initially at rest. We have an object of
mass m with velocity v that hits the turn table b away from the center of the turntable, and sticks
to the turntable. We want to know the final angular velocity of the table.

The initial angular momentum is Lz = mvb. After the collision, we have that Lz = Iω. We now
need to figure out what I is. This will be the sum of Iturntable and Iputty:

I = mR+ M

2 R2

Thus we have that
mvb =

Å
mR+ M

2 R

ã
ω → ω = m(

m+ M
2
) vb
R2

1.6.4 Center of Mass

We denote the center of mass vector as Rcm or R, and it is given by the weighted sum of all the
position vectors:

R = 1
M

∑
α

mαrα

Where M is the total mass of the system. We can split this into components:

Rx = 1
M

∑
α

mαxα

and similarly for the y and z components. We can write Newton’s Second Law for the entire system:

Fext = MR̈cm
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The center of mass behaves like a single particle, and we can track its motion through space via the
external forces on it. The reason that we can do this is because

MR̈ =
∑
α

mαr̈α =
∑
α

Fα = Fext

Another special property is that the center of mass is that, if we choose the center of mass to be our
origin, then L̇ = Γext, all relative to the center of mass. This is a version of the angular form of the
second law.

Let us do an example. We have a dumbbell, which is composed of two masses m a distance 2b apart
from each other. We apply a force upwards on the left mass, Fmallet for a time ∆t.

The change in total linear momentum is the impulse of the mallet, F∆t. The initial momentum
was 0, so the final linear momentum is

pf = MṘ = F ∆t

Thus we have that
Ṙ = F ∆t

2m
We can similarly compute the change in total angular momentum:

|Γext| = Fb

And we know that Li = 0. Thus we have that

|Lf | = Iω = |Γext|∆t = Fb∆t

We can find that the moment of inertia of the dumbbell is 2mb2, and thus we have that

ω = F∆t
2mb

We can then find the velocities of the left and right sides:

vleft = vcm + ωb = F∆t
2m + F∆tb

2mb = F∆t
m

Solving for the right velocity:
vright = F∆t

2m − F∆t
2m = 0

1.7 Work-Energy Theorem
The work-energy theorem begins by defining the kinetic energy for a single particle:

KE = T = 1
2mv2

The time derivative is
dT

dt
= 1

2m
d

dt
(v · v) = 1

2mv̇ · v

Now noting that mv̇ = Fext, we have that

Ṫ = F · v = F · ṙ
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We can then cancel out the dts, and we have that

dT = F · dr

We define the right side to be the differential work, dW . If we have some path between two points,
and some force law F , we can partition the path into infinitely many drs, and add up all the pieces
of differential work: ∫ b

a
dT =

∫ b

a
F · dr

The left side will just be the change in the kinetic energy, ∆T :

∆T =
∫ b

a
F · dr

Let us do an example. Suppose the origin is the first point, and the second point is a quarter arc of
a circle to the right of origin, to point (1, 1). We can parameterize the path via a sweep angle from
the point (1, 0):

r = (1 − cos θ, sin θ)

We can take a differential path segment:

dr = (sin θ, cos θ)dθ

We can specify the force law F = (y, 2x). We can then compute the integral:

W =
∫ π

2

0
(yx̂+ 2xŷ) · (sin θx̂+ cos θŷ) dθ

=
∫ π

2

0
y sin θ + 2x cos θ dθ

Now using the fact that x = 1 − cos θ and y = sin θ:

W =
∫ π

2

0
sin2 θ + 2(1 − cos θ) cos θ dθ

=
∫ π

2

0
sin2 θ + 2 cos θ − 2 cos2 θ dθ = 2 − π

4
This is the work done by the force on the particle as it moves along the path from points a to b.

We will now define a conservative force. If the work performed by a particular force on a particle
travelling from position a to b only depends on the location of a and b and does not depend upon
the path, the velocity, or the time, then the force is conservative.

The path independence will allow us to use Stokes’ theorem:

W =
∫
∂A

(∇ × F ) · n̂ dA

We will use this to define a potential function.
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1.8 Harmonic Oscillators
Oscillations occur when we have systems where forces that can go both ways, and are dependent
on the displacement from an equilibrium point. These are restoring forces, it wants to return to
equilibrium. Harmonic oscillations are those that have a restoring force that is proportional to the
displacement from equilibrium. The byproducts of an oscillation being harmonic are that they have
the same period, regardless of the amplitude of the oscillation.

Let us first talk about damping forces. The physical characteristics of a damping force include a
proportionality to velocity. This generates a linear differential equation:

mẍ+ bẋ+ kx = 0

Which we derived from the set up of
mẍ = −kx− bẋ

Another property is that when we are oscillating, the pgase of the damping force is π
2 out of phase

with the displacement. We now divide through by m, and define new varaibles, ω0 =
»

k
m :

ẍ+ 2βẋ+ ω2
0x = 0

Where β = b
2m .

This is a linear equation, we we should have solutions of the form ert. We can insert this into the
diffeq, and find the characteristic polynomial:

r2 + 2βr + ω2
0 = 0 → r = −β ±

»
β2 − ω2

0

1.8.1 Weakly Damped Systems

Any statement about a parameter with physical dimensions, being “small” or “large”, has to be
relative to some other quantity with the same units. In this case, weak means β < ω0. If this is true,
then the actual oscillation frequency is shifted away from ω0. We have that r = −β ±

√
β2 − ω2

0,
and this is imaginary, so we can write it as

r = −β ± i
»
ω2

0 − β2 → −β ± iωu

Where we define ωu =
√
ω2

0 − β2. We note that this frequency is ≤ ω0. This is the actual oscillation
frequency of the weakly damped system. We can also do this with the binomial approximation if
β ≪ ω0, which states that (1 + ϵ)a ≈ 1 + aϵ:

ωu = ω0

 
1 − β2

ω2
0

→ ω0 − β2

2ω0

We have that r = −β ± iωu, so we can insert these back into the solution:

x = Ae−βteiωut +Be−βte−iωut

We see that both terms decay in ampltitude, at the same exponential rate. We can define a quality
factor, Q:

Q = ω0
2β = ω0

γ

Q is dimensionless, and can be interpreted as how much the amplitude decays in Q oscillation cycles.
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1.8.2 Overdamped Systems

If β > ω0, then both values of r are real, and we end up with no oscillation.

1.8.3 Driven Harmonic Oscillators

If we have a driving force, we write it using a complex exponential, but we imply the real portion of
the expression:

mẍ+ bẋ+ kx = Fde
iωt

We then rewrite this equation
ẍ+ 2βẋ+ ω2

0x = f0e
iωt

Where we note that f0 = Fd
m . We can find the steady-state solution by guessing x(t) = Ceiωt, and

we can insert this into the diffeq and cancel out the exponential. We can then rewrite what we have
left:

C[−ω2 + 2βωi+ ω2
0] = f0

We can then solve for C:
C = f0

(ω2
0 − ω2) + 2βωi

We can find the amplitude and phase of this, A and δ:

x(t) = Aeiδeiωt

We can do this by taking the real part of C, and then rewriting what we find to find A and δ. We
can find the real amplitude:

A = |f0|√
(ω2

0 − ω2)2 + 4β2ω2

Or
A2 = |f0|2

(ω2
0 − ω2)2 + 4β2ω2

We can plot the frequency ω as a function of β, and we will see a resonance peak, centered at ω0.
As β decreases, we will see that the peak becomes taller and taller and more centered at ω0, the
driving frequency. We also note that larger Q defines a taller peak.

We have done the steady-state solution for the differential equation. However, any solution to the
associated homogeneous diffeq can be added to the particular solution:

ẍ+ 2βẋ+ ω2
0x = 0

From this, we have our general solution

x(t) = Ceiωt +Ae−βt cos(ωt) +Be−βt sin(ωt)



PHYS410 Notes (Fall 2022) Hersh Kumar
Page 17

2 Formulations of Mechanics
2.1 Lagrangian Mechanics

We have done mechanics through Newton’s Laws so far, such as through the use of Newton’s Second
Law:

dp

dt
= Fnet

Where we focus on force, which is a vector, often in Cartesian coordinates, which allows us to
separate the forces and vectors into components.

We have also taken advantage of energy conservation, where the total energy in the system is given
by

E = 1
2mv

2 + U(r)

This says nothing about force, but still gives us the necessary information about the system.

We will now move onto Lagrangian mechanics. This is based on Hamilton’s Principle, which states
that the path that a dynamical system actually takes from one point to another over a given time
interval is the one that makes the action integral stationary. We define the action integral as S:

S =
∫ t2

t1
L(x, ẋ, t) dt

This function L is known as the Lagrangian. In an ordinary intertial reference frame,

L = K − U

The path of the system in Hamilton’s principle is in this case x(t). It could also involve y(t) or z(t),
when talking about multidimensional motion. When we say “from one point to another” means
that the starting and ending points are fixed, so we have t1 and t2, as well as x(t1) and x(t2).

This action integral is an example of a functional, which takes a function as input and calculates a
value (whereas functions take values and output values).

Stationary means that small variations in the path do not change S to first order (in the size of the
small variation). This means that path with this property is a minimum, maximum, or inflection
point for S.

Let us change variables, and rewrite the action:

S =
∫ x2

x1
f(y, y′, x) dx

Where we are not calling the function the Lagrangian just yet. We have the conditions that x1, x2,
y(x1), and y(x2) are all fixed. We will be looking for a path y(x) that makes the action stationary.
If we consider adding some variation function η(x) to the path, with some scale factor α, so we have
a modified path

ymod(x) = y(x) + αη(x)

We now can find the derivative of the action with respect to α:

dS

dα
=

∫ x2

x1

df

dα
dx =

∫ x2

x1

Å
∂f

∂y

∂y

∂α
+ ∂f

∂y′
∂y′

∂x
+ ∂f

∂x

∂x

∂α

ã
dx
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We note that ∂y
∂α = η(x), and we note that y′(x) = y′

0(x) + αη′(x), so ∂y′

∂α = η′(x). We also have
that ∂x

∂α = 0. We can then rewrite our derivative:

dS

dα
=

∫ x2

x1

Å
∂f

∂y
ηx+ ∂f

∂y′ η
′(x)
ã
dx = 0

We can use integration by parts on the right integral (
∫
v du = uv −

∫
u dv). We note that the

endpoint term uv
∣∣x2
x1

will be zero, because the variation is 0 at the endpoints of the path. Thus we
are left with

dS

dα
=

∫ x2

x1

ï
∂f

∂y
− d

dx

Å
∂f

∂y′

ãò
η(x) dx

We want this derivative to be zero for all η(x). This requires that the terms in brackets must be
zero:

∂f

∂y
− d

dx

Å
∂f

∂y′

ã
= 0

This is the Euler-Lagrange equation, and will allow us to obtain the path y(x) that the system
takes. If there is more than one dimension, the path will have an Euler-Lagrange equation for each
dimension, and the path would need to satisfy them simultaneously.

An example of this would be to find the shortest path between two points on a cylinder. For this,
the action integral is really a calculation of the length of the path, L =

∫
ds.

Let us find the minimum path length between two points in the x y plane. We first want to integrate
along a path to find the path’s length. We first express the path length element ds in terms of dx
and dy:

ds =
√
dx2 + dy2

If we have that the y coordinate is a function of x, then we can rewrite this path element:

ds =

 
dx2 +

Å
dy

dx

ã2
dx2 =

√
1 + y′2 dx

And similarly for the case where x is a function of y:

ds =
√

1 + x′2 dy

We can also describe the path parametrically, with x and y as functions of t:

ds =
√
dx2 + dy2 =

 Å
dx

dt

ã2
dt2 +

Å
dy

dt

ã2
dt2 = dt

√
x′2 + y′2

From this, we can write the total path integral as

L =
∫ t1

t0

√
ẋ2 + ẏ2 dt

Let us now use one of these methods. Let us suppose that the path is given by x as a function of y.
For that reason, we will have an integral of the form

L =
∫ y1

y0

√
x′2 + 1 dy
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This is our action-like integral, as it is a function of x, x′, and y. For the Euler-Lagrange equations,
we have that

∂f

∂y
− d

dx

Å
∂f

∂x′

ã
= 0

In this case, f =
√

1 + x′2. We can see that the partial with respect to x is

∂f

∂x
= 0

And we have that ∂f
∂x′ = 1

2(x′2 + 1)−1/22x′. Inserting these into the Euler-Lagrange equation, we are
left with:

(x′2 + 1)−1/2x′ = C

Where C is a constant. We can then solve this, and we have that the path is a straight line, as we
expect:

dx

dy
=

 
C2

1 − C2

To find the actual line, we would insert the boundary conditions, the start and end points, which
would determine C.

Suppose we now want to find the shortest path between two points on the surface of a cylinder. We
can use spherical coordinates, (R, θ, z). Suppose we can describe our path with ϕ(z). We can write
out the path element:

ds =
»
sz2 + (Rdϕ)2 →

√
1 +R2ϕ′2 dz

We can then write out the integral:

L =
∫ z2

z1

√
1 +R2ϕ′2 dz

If we insert this into the Euler-Lagrange equations, we will find that the shortest path is givne by
ϕ(z) increasing linearly with z.

Suppose we want to measure the elapsed time along the path, not the length of the path. The
integrand should be an element of elapsed time. If we have the speed as some function v(x, y), we
can write out the time element:

dt = ds

v(x, y)
We can then write out the integral:

T =
∫ t2

t1

ds

v(x, y)

In a gravitational field, for motion that starts at point A and ends at point B, what shape ramp
should we build so that sliding along the ramp, with no friction, minimizes the elapsed time to get
to point B?

We generate our coordinate system with point A being at (0, 0), and B at (x2, y2). We will assume
that downwards is positive y, and we will assume that the path can be described by x(y). We now
need to find the speed at a given point along the path. From energy conservation, we know that the
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the total energy is equal to 0 at point A, and 1
2mv

2 − mgy at point B. From this, we have that
v =

√
2gy. The elapsed time is given by

T =
∫
path

dt =
∫
path

ds

v
=

∫ y2

0

dy
√
x′2 + 1√
2gy = 1√

2g

∫ y2

0

 
x′2 + 1
y

dy

We can now use the Euler-Lagrange equation, with our integrand being f(x, x′, y):

∂f

∂x
− d

dy

Å
∂f

∂x′

ã
= 0

We can notice that ∂f
∂x = 0, and that

∂f

∂x′ =
1
2(x′2 + 1)−1/22x′

√
y

Thus we have that
d

dy

ñ 1
2(x′2 + 1)−1/22x′

√
y

ô
= 0

Thus we have that
(x′2 + 1)−1/2x′

√
y

= C

Where C is a constant. We can do some algebra:

2x′ = C
√
y
√
x′2 + 1

x′2 = C2y(x′2 + 1)

This gets us that

x′2 = C2y

1 − C2y

We can square root this:
x′ = C

…
y

1 − C2y

We can now separate variables and integrate:

dx

dy
= C

…
y

1 − C2y∫ x2

0
dx = C

∫ y2

0

…
y

1 − C2y
dy

We will now redefine a = 1
2c2 :

x2 =
∫ y2

0

…
y

2a− y
dy

This integral can be solved the substitution y = a(1 − cos θ), and then dy = a sin θ dθ. We can then
do some algebra and we find that

x2 =
∫ θf

0

1 − cos θ
sin θ a sin θ dθ =

∫ y2

0
a(1 − cos θ) dθ
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If we solve this, we find that the full path is described by x = a(θ − sin θ) and y = a(1 − cos θ),
where θ goes from 0 to θf . This describes a cycloid function. Thus the fastest path from A to B
will be a section of the cycloid.

We have a block of mass m, on a wedge of mass M , both free to slide with zero friction. We want
to figure out the dynamics of the system. We choose our coordinates to be w and b, where w is the
edge of the wedge, and b is the distance of the small mass down the wedge.

We now need to write the kinetic and potential energies. We first note that xblock = b cosα − w,
and yblock = −b sinα. We can then write out the kinetic energy:

K = 1
2Mẇ2 + 1

2m
[
(−ẇ + ḃ cosα)2 + (−ḃ sinα)2] = 1

2Mẇ2 + 1
2m

[
ẇ2 − 2ẇḃ cosα+ ḃ2]

We have that the potential energy is given by −mgb sinα, and thus the Lagrangian is given by

L = 1
2Mẇ2 + 1

2m
[
ẇ2 − 2ẇḃ cosα+ ḃ2] +mgb sinα

We can write out the Lagrange equations for w and b:

d

dt

∂L
∂ẇ

= ∂L
∂w

→ d

dt

[
Mẇ +mẇ −mḃ cosα

]
= 0

From this, we know that Mẇ +mẇ −mḃ cosα = k, where k is some constant. The other way to
look at it is to actually take the derivative:

(M +m)ẅ −mb̈ cosα = 0

We can do the EL equation for b, and we find that

d

dt

[
mḃ−mẇ cosα

]
= mg sinα

→ mb̈−mẅ cosα = mg sinα

→ b̈− ẅ cosα = g sinα

We now have two equations, and we can combine them:

b̈− mb̈ cosα
M +m

cosα = g sinα

b̈ = (M +m)g sinα
(M +m) −m cos2 α

= (M +m)g sinα
M +m sin2 α

From this, we could integrate twice and then solve for b, and then use that to backsolve for w.

Suppose we have some fuzzy dice hanging from the mirror inside a car. There is some angle from
the vertical, denoted ϕ. The car is accelerating with initial velocity v0, and constant acceleration a.
We want to calculate the kinetic energy for the dice. We have that

x = v0t+ 1
2at

2 − l sinϕ y = −l cosϕ
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We can then write out the Lagrangian:

L = 1
2m

[
(v0 + at− l cosϕϕ̇)2 + l2 sin2 ϕϕ̇2] +mgl cosϕ

We note that this now explicitly depends on t. We can now write out the EL equation:

d

dt

ï1
2m

(
2(v0 + at− l cosϕϕ̇)(−l cosϕ) + 2(l sinϕϕ̇)l sinϕ

)ò
= ∂L
∂ϕ

→ d

dt

[
v0(−l cosϕ) + at(−l cosϕ) + l2 cos2 ϕϕ̇+ l2 sin2 ϕϕ̇

]
= ∂L
∂ϕ

→ d

dt

[
l2ϕ̇− (v0 + at)l cosϕ

]
= ∂L
∂ϕ

→ l2ϕ̈− al cosϕ+ (v0 + at)l sinϕϕ̇ = ∂L
∂ϕ

We can now do the right hand side:

l2ϕ̈− al cosϕ+ (v0 + at)l sinϕϕ̇ = (v0 + at)l sinϕϕ̇− gl sinϕ

We now simplify:
ϕ̈ = a

l
cosϕ− g

l
sinϕ

What does this tell us? We can try to find an equilibrium angle, when ϕ̈ = 0, and we find that
tanϕe = a

g .

We can also ask whether this is a stable or unstable equilibrium. There are two ways to do this.
The first way to do so is to look at some small variation, ϕ = ϕe + ϵ. We then compute ϕ̈ for this
varied point. We will then find that ϵ̈ = −

(
a
l sinϕe + g

l cosϕe
)
ϵ. We see that this is a negative

restoring force, proportional to ϵ. For a small deviation, this will be like a spring, and thus we have
a stable equilibrium. The other method is to evaluate d2

dϕ2 at ϕe.

Suppose that we have a bead on a rotating wire loop, where the bead has coordinate θ from the
rotation axis, and the loop is rotating with angular velocity Ω. The Lagrangian will be the sliding
kinetic energy, 1

2m(Rθ̇)2, the rotational kinetic energy, 1
2m(R sin θΩ)2, and we have the potential

energy, where we measure the height from the base, U = mgR(1 − cos θ):

L = 1
2m(Rθ̇)2 + 1

2m(R sin θΩ)2 −mgR(1 − cos θ)

We want to find the dynamics of θ:

d

dt

[
mR2θ̇

]
= m(R sin θΩ)(R cos θΩ) −mgR sin θθ̇

→ θ̈ = sin θ cos θΩ2 − g

R
sin θ

θ̈ =
(

Ω2 cos θ − g

R

)
sin θ

This is the equation of motion for θ. We can find the equilibrium angle, which is where θ̈ = 0, so
whenn sin θ = 0 or when Ω2 cos θ − g

R = 0, or cos θ = g
RΩ2 .
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Let us have some general remarks on approximating. When we construct the Lagrangian, we could
have a messy function of the coordinates. We generally have two options/approaches. One option is
to apply the Euler-Lagrange equation to get the exact equation(s) of motion. We can then identify
the equilibrium point or points, locations where the second derivative of the coordinate of interest
is 0. We can then approximate the differential equation around the equilibrium point, and that
should give us a differential equation in the form of a harmonic oscillator. This allows us to define
an oscillation frequency ω.

The other approach is to approximate the Lagrangian, before we insert it into the Euler-Lagrange
equations, for small deviations from the equilibrium point. From this, we should get a harmonic
oscillator differential equation. For either case, we want to keep the lowest-order nonzero terms on
both sides, and we note that the derivative of the coordinate will also be small, of roughly the same
order as the coordinate itself. Note that when using the second method, we sometimes will need to
approximate cos θ as 1 − 1

2θ
2.

2.1.1 Lagrange Multiplier method

Suppose we have a Lagrangian L(x, y, ẋ, ẏ). A straightforward application of the Euler-Lagrange
equation gives us two differential equations, one for x and one for y. These are in principle separate,
and then we could impose constraints on those, such as using a constraint such as x2 + y2 = L2

to substitute into the equations. Another way to do this is the Lagrange multiplier method. This
method is based on expressing the constraint as f(x, y) = C, where C is a constant. We can add this
to L without change the dynamics of the system, since it disappears when you take the derivatives.
You add it along with a Lagrange multiplier, which is a function of time:

L → L + λf

Now the Euler-Lagrange equation becomes

d

dt

ï
∂Lnew
∂ẋ

ò
= ∂Lnew

∂x

The added term has no dependence on ẋ, so the left side is the same as for the original L:

d

dt

ï
∂L
∂ẋ

ò
= ∂L
∂x

+ λ
∂f

∂x

Now we solve simultaneously for x(t), y(t), and λ(t), that satisfy the two Lagrange Equations. We
now have 3 unknown functions, and 3 equations. The reason this can be useful, is because the
flexibility of λ(t) can help solve all 3 equations.

2.1.2 Conservation Laws

Suppose there is some coordinate q that the Lagrangian doesn’t explicitly depend on (it can depend
on q̇). This is known as an “ignorable” coordinate. Then, from the E-L equation, we have that

∂L
∂q

= 0 → d

dt

ï
∂L
∂q̇

ò
= 0

Thus we have that ∂L
∂q̇ is a constant. This is the generalized momentum for q. This is a case of

Noether’s theorem:
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Theorem 2.1. If the dynamics of the system are invariant under a coordinate shift, then there is a
conserved quantity.

A trivial example of this is the free particle. The Lagrangian is

L = 1
2mẋ

2

We have no explicit dependence on x. The generalized momentum of x is mẋ, and is by Noether’s
theorem conserved, as we expected, linear momentum of the free particle is conserved.

For rotational motion, if there is no ϕ dependence in L:

L = 1
2m(rϕ̇)2 + 1

2mṙ
2 − U(r)

We see that ϕ is an “ignorable” variable. Via the property that we have just seen, we know that ∂L
∂ϕ̇

is conserved:
∂L
∂ϕ̇

= 1
2mr

22ϕ̇ = mr2ϕ̇

This is in fact, the angular momentum that we are familiar.

Let us look at another invariance example. Suppose L doesn’t explicitly depend on t:

L(q1, q̇1, q2, q̇2)

If we look at the total derivative with respect to time of this:

dL
dt

= ∂

∂q1
q̇1 + ∂

∂q2
q̇2 + ∂

∂q̇1
q̈1 + ∂

∂q̇2
q̈2

We now note that the first part of the first term on the right can be rewritten using the Euler-
Lagrange equation as d

dt

î
∂L
∂q̇1

ó
. If we define this inner derivative as p1, we can rewrite our total

derivative as
dL
dt

= dp1
dt
q̇1 + p1

d

dt
q̇1 + dp2

dt
q̇2 + p2

d

dt
q̇2 = d

dt
[p1q̇1 + p2q̇2]

From this, we have that
pq q̇1 + p2q̇2 − L = C

Where C is constant. This combination is the formal definition of the Hamiltonian for a mechanical
system.

2.1.3 Central Forces

Suppose we have two objects with a mutual force that is direct along the line connecting them, with
a force magnitude that depends only on the separation distance:

F (|r1 − r2|)

We define r = r1 − r2, and we let r = |r|. Thus we have that F = F (r)r̂. This began as a statement
about 6 coordinates, the position coordinates of the two objects, but we have simplified it down to 1
coordinate. We can write out the Lagrangian:

L = 1
2m1|ṙ1|2 + 1

2m2|ṙ2|2 − U(r)
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If we change coordinates to center of mass coordinates:

rcm = m1r1 +m2r2
m1 +m2

Then we have that r1 = rcm + m2
m1+m2

r, and likewise we have that r2 = rcm − m1
m1+m2

r. We can
now compute the derivatives:

ṙ1 = ṙcm + m2
m1 +m2

ṙ ṙ2 = ṙcm − m1
m1 +m2

ṙ

We can substitute these into the Lagrangian:

L = 1
2(m1 +m2)|ṙcm|2 + 1

2

Å
m1m2
m1 +m2

ã
|ṙ|2 − U(r)

This has the form of a system with two non-interacting particles. The dynamics of rcm and r are
independent, the center of mass just acts like a free particle. We can just focus on the r dynamics:

L = 1
2µ|ṙ|2 − U(r)

Where µ = m1m2
m1+m2

, is the reduced mass. Now we have 3 coordinates, the components of the r vector.
From experience/intuition, we know that the motion will be in a plane. We can describe this with
polar coordinates, r and ϕ. The Lagrangian we obtain is

L = 1
2µ(ṙ2 + (rϕ̇)2) − U(r)

We note that this doesn’t depend explicitly on ϕ, and thus ∂L
∂ϕ̇

is conserved. Thus we have that
ℓz = µr2ϕ̇ is conserved.

We can write out the EL equation for r:

d

dt
(µṙ) = µrϕ̇2 − ∂U

∂r
→ µr̈ = µrϕ̇2 − ∂U

∂r

We can also substitute in the definition of the angular momentum, to get rid of ϕ̇:

µr̈ = ℓ2

µr3 − ∂U

∂r

This is 1D dynamics for r, with the “force” equal to µṙ2 − ∂U
∂r . The additiional term, in terms of

the angular momentum and the position is the centrifugal force. We can also write this as

µr̈ = − ∂

∂r

ï
ℓ2z
µr2 + U

ò
This combination term is the effective potential, it acts like a potential energy function, a function
of the position. The extra term is sometimes call the “centrifugal barrier”. This barrier term is
always a positive contribution to the effective potential, while U(r) can be positive or negative. Put
another way, the added term is always repulsive, while U(r) can be attractive or repulsive. If there
is no dissipation, then something will be conserved. We can write that

Kr + Ueff = E
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is conserved, where Kr is the radial kinetic energy, 1
2µṙ

2. This is all of the kinetic energy we have,
since we have boiled the system down to a single coordinate, the radial component r. If we compare
this to the true kinetic and potential energies in the 2D case:

1
2µ(ṙ2 + r2ϕ̇2) + U(r) = E

In essence, we have kept the total energy the same, but “moved” the azimuthal kinetic energy to
affect the potential term instead of the kinetic term. The dynamics of r will depend on E. At any
r, we know that

|ṙ| =
 

2
µ

(E − Ueff (r))

If we look at Ueff , the local minima of this function will be the stable configurations at which we
have circular motion. The actual orbit in the 2D plane depends on values of E and ℓz.

Let us now look at the stability of circular orbits. We can look at these like any equilibrium, but
we use Ueff (r). We have that if d2

dr2Ueff (r) > 0, then we have a stable solution, since the graph is
concave upward. Let us consider central forces of the form F = −krn. The negative sign means
that it is attractive. From this, we have that U(r) = k

n+1r
n+1, using the fact that U = −

∫
F (r) dr.

The effective potential will then be given by

Ueff (r) = k

n+ 1r
n+1 + ℓ2z

2µr2

If we have a circular orbit, then we have some r0 stable point, which is when the effective potential
is at a minimum:

dUeff
dr

= 0 → krn0 − ℓ2z
µr3

0
= 0 →

We can then solve this for r0, and we have that

r0 =
Å
ℓ2z
µk

ã 1
n+3

We can check if it is stable:
d2

dr2Ueff = knrn−1 + 3ℓ2z
µr4 > 0

We can then solve this, and we have a stable case when

n > −3

We can now look at the frequency of small oscillations around r0. We let r = r0 + ϵ, and r̈ = ϵ̈. We
then insert this into our equation of motion, and we have that

µϵ̈ = −k(r0 + ϵ)n + ℓ2z
µ

(r0 + ϵ)−3

We divide by µ, and prep to use the binomial approximation:

ϵ̈ = −k

µ
rn0

Å
1 + ϵ

r0

ãn
+ ℓ2z
µ2 r

−3
0

Å
1 + ϵ

r0

ã−3
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We can then use the binomial approximation, and then we are left with

ϵ̈ ≈ −k

µ
rn0

Å
1 + nϵ

r0

ã
+ ℓ2z
µ2 r

−3
0

Å
1 − 3ϵ

r0

ã
We now use the fact that rn+3

0 = ℓ2z
µk , to combine terms, and we are left with

ϵ̈ ≈ −
Å
ℓ2z(n+ 3)
µ2r4

0

ã
ϵ

For a circular or near circular orbit, we have that ℓz = µr2ωorbit:

ϵ̈ ≈ −((n+ 3)ω2
orbit)ϵ

Thus we have that the angular frequency of small radial oscillations is

ω =
√
n+ 3ωorbit

We have taken a 2D system and reduced it to an equivalent 1D problem with coordinate r. We get
solutions for r(t). There is also the motion of rcm, but it is motion with constant velocity. Putting
it all together:

r1 = rcm + m2
m1m2

r r2 = rcm − m1
m1 +m2

r

We have shown that the 2D Lagrangian had an azimuthal term in the kinetic energy:
1
2µ(rϕ̇)2

Which gets converted into the potential term in the 1D Lagrangian:
ℓ2z

2µr2

Which can be rewritten via ℓz = µr2ϕ̇:
1
2µr

2ϕ̇2

We see that they are the same, but this is not just an algebraic regrouping of terms, since we flipped
the sign of the term when looking at the second Lagrangian. The reason for this is based on the
independent variables of the Lagrangians. These two are not the same Lagrangians. In the 2D case,
we have the variables r and ϕ, our Lagrangian is of the form L(r, ϕ). On the other hand, in the 1D
Lagrangian, there is only one coordinate, r, and ℓz is fixed by construction. ϕ̇ is not fixed, because
if r changes, ϕ̇ must change, because ℓz must be fixed. The difference in the sign comes from the
fact that different things are considered fixed in both Lagrangians.

Assume that we have found an equilibrium point for the coordinate in a 1D system, such as r0. We
can heck stability and find the ω of small oscilations in two ways. The first method is to take the
equation of motion from the Euler-Lagrange equation, and define ϵ = r − r0 and approximate for
small ϵ. We can then look at the sign to see if it is a restoring force, and the value of the “spring
constant” together with the mass to get ω:

mϵ̈ = Cϵ

If C is negative, then ω =
»

|C|
m .

The other approach is more useful when we can characterize the effective potential. In this case, the
“spring constant” is simply the second derivative of Ueff (r), evaluated at r0.
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2.1.4 Orbits in Gravitational Potentials

Suppose we have two object in mutual orbit, with masses M and m, with a gravitational force of

F = Gmm

r2

between them. Since the gravity force has the form F = −kr−2, we already established that the
period of radial variations is equal to the orbital period, n = −2, so ω = ωorbit.

Let us now find the actual shape. From the gravitational potential energy, U(r) = −GMm
r , we get

the equation of motion:

µr̈ = −GMm

r2 + ℓ2

µr3

We want to know r(ϕ), so we can make a polar plot. The trick here is to make a new variable,
u = 1

r , which allows us to compute the derivative of r:

ṙ = dr

dt
= d

dt

1
u

= d

dϕ

1
u

dϕ

dt
= − 1

u2
du

dϕ
ϕ̇

We know that ℓ = µr2ϕ̇:

ṙ = − 1
u2
ℓzu

2

µ

du

dϕ
= −ℓz

µ

du

dϕ

The next step is to compute the second derivative:

r̈ = d

dt
ṙ = −ℓz

µ

d

dt

du

dϕ
= −ℓz

µ

d

dϕ

du

dϕ

dϕ

dt
= − ℓ2z

µ2u
2 d

2u

dϕ2

We can now take our equation of motion and substitute in:

µr̈ = −GMm

r2 + ℓ2

µr3 → µ

Å
− ℓ2z
µ2u

2 d
2u

dϕ2

ã
= −GMmu2 + ℓ2z

µ
u3

We can cancel out a u2, divide by ℓ2z
µ , and we are left with

d2u

dϕ2 = GMmµ

ℓ2z
− u

This is almost a harmonic oscillator equation, but we are still alright since the extra term is a
constant. We can let v = u− GMmµ

ℓ2z
, and solve for v, and then backsolve for u:

u(ϕ) = GMmµ

ℓ2z
+A cos(ϕ− ϕ0)

Which can be written as
u(ϕ) = B (1 + ϵ cos(ϕ− ϕ0))

Where B = GMmµ
ℓ2z

and ϵ = A
B . We know that r(ϕ) = u−1(ϕ):

r(ϕ) = C

1 + ϵ cos(ϕ− ϕ0)
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Where C = ℓ2z
GMmµ . We see that we have two parameters, ϵ and C.

If we plot this, the origin is one focus of the ellipse that is generated, and is the center of mass of
the two body system. In the case of the Earth and the Sun, the center of mass point is almost
exactly the same as the Sun’s location, but in the case of two comparable masses, we have the two
objects in elliptical orbits around the center of mass point, which is moving with constant velocity.
The point on an orbit that is the furthest away from the focus is the apoapsis, (apogee if around
the Earth, aphelion if around the Sun, apojove if around Jupiter, etc). And the point closest to the
focus is the periapsis. The distance from the focus to the apoapsis is given by C

1−ϵ , and the distance
from the focus to the periapsis distance is given by C

1+ϵ .

We have that ϕ̇ in the elliptical orbit is not constant, and we know that ϕ̇ = f(t):

dϕ

dt
= f(t)

Integrating: ∫ 2π

0
dϕ =

∫
f(t) dt

In the case of Kepler’s 3rd law, for a circular orbit:

mv2

r
= GMm

r2

Which gets us that v2 = GM
r . The speed is related to the period via v = 2πr

T , so combining these
things, we have that Å2πr

T

ã2
= GM

r
→ T 2 = 4pi2r3

GM

We can now replace r by a, the semi-major axis, for an elliptical orbit:

4π2

GM
a3 = T 2

Note that this holds for M ≫ m, which is useful for cases like the solar system.

2.2 Hamiltonian Mechanics
The Hamiltonian is defined using the Lagrangian. If we have L(q1, q2, . . . , q̇1, q̇2, . . . q̇n, t), the
Hamiltonian is defined as

H =
∑

piq̇i − L

Where pi = ∂L
∂q̇ , and is the generalized momentum for the q coordinate. This is deeper than just

a variable substitution, for a couple reasons. The generalized momentum may not be trivial or
familiar, and H is a function:

H(q1, q2, . . . qn, p1, p2, . . . pn)

We see that we have the momenta, rather than the time derivatives. It is especially useful to focus
on the momenta when they are conserved quantities, so pi is constant, while q̇i is not constant.

This set of coordinates, q and p, are called phase space, versus the Lagrangian’s state space. In
phase space, the evolution of a system is based on the initial conditions, just like state space.
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Notably, in phase space, trajectories do not intersect, if we start at two different points in phase
space, and evolve the system, the paths will not intersect each other.

To obtain the Hamiltonian, we write down L in terms of qi and q̇i, find all the generalized momenta,
by taking derivatives with respect to q̇i, then compute the Hamiltonian. We can solve to get the q̇i
as a function of qi, pi, and possibly t, and then substitute to eliminate the q̇i.

Now we want to find how the system evolves in the Hamiltonian picture. Looking at derviatives of
the Hamiltonian:

∂H
∂q

= ∂

∂q
[pq̇ − L(q, q̇, t)]

= p
∂q̇

∂q
− ∂L
∂q

− ∂L
∂q̇

∂q̇

∂q

We see that the first and last term cancel, and thus we have that

∂H
∂q

= −∂L
∂q

From the Euler-Lagrange equation, we know what the right side is equal to:

∂H
∂q

= − d

dt

Å
∂L
∂q̇

ã
= −ṗ

Looking at the other derivative of the Hamiltonian (skipping through the algebra, but we have a
similar cancellation as above):

∂H
∂p

= q̇

This pair of equations gives us the dynamics of the system. This is a set of two first-order differential
equations. Perviously, we showed that if the Lagrangian has no explicit dependence on time, then
H is conserved, and is the total energy. These two equations are called Hamilton’s equations. We
can think of plotting this in phase space, and these two give the evolution of the system in phase
space, they define the trajectory.

Looking at a particle in free space, in 1D, with no force acting on it:

L = 1
2mẋ

2

∂L
∂ẋ

= mẋ

H = mẋ2 − 1
2mẋ

2 = 1
2mq̇

2

Now using the fact that ẋ = p
m :

H = p2

2m
We can now take derivatives to get the motion:

∂H
∂p

= ẋ → ẋ = p

m
= ẋ

As expected, the velocity will remain the same, for a free particle.
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Note that if the Lagrangian has no explicit dependence on t, then neither does the Hamiltonian. In
that case, the Hamiltonian is a conserved quantity.

If the relationship between the generalized coordinates and inertial (Cartesian) coordinates is
independent of time, then the generalized coordinates are said to be natural, and H = K + U . This
is because in natural coordinates,

∑
piq̇i = 2K, and thus the Hamiltonian becomes H = 2K − L =

2K −K + U = K + U .

We also have ignorable coordinates, a generalized coordinate qi that L does not depend on. We note
that if L does not depend on qi, then H will not depend on qi either. Recall that this means that the
generalized momentum associated with that coordinate was conserved/constant. In the Hamiltonian
case, it includes pi, but if thats a constant, its not really a variable, its a constant/parameter.

Let us look at a complex Atwood machine. This has a mass of 2m on the right side, and on the left
we have a mass m attached to a spring, attached to another mass m. We assume that the pulley
has negligible mass and rotational inertia. The spring has equilibrium length while hanging le.

We define our coordinates to be on the left side, where y is the distance from the pulley to the first
mass, and we define the distance from the bottom of the first mass to the second mass to be le + x.
We note that k(le − l0) = mg, the displacement from equilibrium is given by the mass connected to
the spring underneath. We can write out the kinetic energy:

K = 1
2mẏ

2 + 1
2m(ẋ+ ẏ)2 +mẏ2

Where the first term is the kinetic energy of the top hanging block, the second term is the kinetic
energy of the spring and second mass (position is given by y + le + x, derivative is ẋ+ ẏ), and the
third term is the kinetic energy of the block on the right. Expanding this:

K = 1
2mẋ

2 + 2mẏ2 +mẋẏ

The potential energy is given by

U = −mgy −mg(y + le + x) + 2mg(y − L) + 1
2k(le + x− l0)2

Where L is the total length of the string. However, since constants in the potential energy will not
affect the dynamics, we can replace this with just y. Likewise, we can drop the le term. Collecting
terms:

U = −mgx+ 1
2k(x+ (le + l0))2 = −mgx+ 1

2kx
2 + kx(le − l0)

We can use the fact that k(le − l0) = mg:

U = −mgx+ 1
2kx

2 +mgx = 1
2kx

2

Putting all of these together, we have that

L = 1
2mẋ

2 + 2mẏ2 +mẋẏ − 1
2kx

2

We can now calculate the momenta:

px = ∂L
∂ẋ

= mẋ+mẏ = m(ẋ+ ẏ)
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py = ∂L
∂ẏ

= 4mẏ +mẋ = m(4ẏ + ẋ)

Now inverting these relationships, to find ẋ and ẏ in terms of the momenta:

py − px = 3mẏ → ẏ = py − px
3m

ẋ = 1
m

Å4
3px − 1

3py
ã

Now let us calculate H, in terms of the momenta. Since the coordinates are natural:

H = K + U = 1
2mẋ

2 + 2mẏ2 +mẋẏ + 1
2kx

2

Substituting in the momenta:

H = 1
2m

[
3ẏ2 + (ẏ + ẋ)2] + 1

2kx
2 = 1

2m

ï1
3(py − px)2 + p2

x

ò
+ 1

2kx
2

We note that there is no dependence of y, and thus py is constant. We now use Hamilton’s equations:

ẋ = ∂H
∂px

= 1
2m
ï
−2

3(py − px) + 2px
ò

= 1
3m [4px − py]

ẏ = ∂H
∂py

= 1
3m(py − px)

Suppose we hold the block on the right still, and pull down the bottom one on the left, then let go.
We will then have the initial conditions x = x0, y = y0, ẋ = 0, ẏ = 0. Initially, px = py = 0, from
the definitions. We also know that py will stay 0. We thus have that ẋ = 4

3mpx, which means that
ẍ = 4

3m ṗx = − 4k
3mx. Thus we have that x oscillates with ω =

»
4k
3m . Since ẋ(0) = 0, it must be a

cosine:
x(t) = x0 cosωt with ω =

…
4k
3m

2.3 Phase Space Orbits
Hamilton’s equations tell how the system will evolve over time from wherever it current is in phase
space. In a system with periodic motion, the curve in phase space will close, it will come back to
where it was before. If the Hamiltonian does not have a time dependence, it will match onto the
path, and repeat the “orbit”.

When we have different orbits/trajectories in phase space, these represent different conserved Hs,
which is sometimes the total energy.

If we have friction, or other non-conservative forces, we can have different paths that approach a
certain path, such as an oscillating system that is losing energy, and forms a spiral.

The concept behind the next theorem, is roughly that if we designate a closed region of phase space
and follow the evolution of all points inside that region, the “volume” occupied by them (as time
elapses) is conserved. Notably, for chaotic systems, this is still true, but the shape can be highly
distorted.
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This relies on the divergence theorem:∫
S

n · v dA =
∫

V
∇ · v dV

Hamilton’s equations can be shown to tell us that the region enclosed by a set of phase space
trajectories has zero divergence:

v = (q̇1, ṗ1, q̇2, ṗ2, . . . )

∇ = ∂

∂q1
q̂1 + ∂

∂p1
p̂1 + . . .

When we take the dot product in the right integral:

∇ · v = ∂

∂q1

Å
∂H
∂p1

ã
+ ∂

∂p1

Å
−∂H
∂q1

ã
+ . . .

We can write this as
= ∂2H
∂q1∂p1

− ∂2H
∂p1∂q1

+ . . .

These two terms cancel, and likewise for every following pair, thus we have 0.

When is Liouville’s theorem valid? If the Hamiltonian is time dependent, then the divergence
calculation would have to be modified, and we will end up at the last step with derivatives of a time
dependent Hamiltonian, but the derivatives will still cancel out.

If we have nonconservative forces:
d

dt

∂L
∂q̇

= ∂L
∂q

+ Fnc

We can then modify Hamilton’s equations, and we will find that this spoils the cancellation, if the
acceleration due to the nonconservative force depends on p.

If the coordinates are not natural, then H is still conserved, it doesn’t have to be the total energy.

Let us now look at the area of phase space orbits. If we have a harmonic oscillator, we have an
ellipse as an orbit, and it has an area of

π

…
2E
k

√
2mE = 2πE

…
m

k
= 2π

ω
E = ET

Where T is the orbital period.

2.4 Noninertial Reference Frames
Let us think back to the fuzzy dice in the car example that we worked through. We fiund that there
was an equilibrium angle, and tanϕe = a

g . If we are riding in the car, then in your reference frame,
the dice are hanging at (or maybe swinging around), this angle relative to the car’s natural vertical.
In the passenger reference frame, we have some gravitational force, and some “extra” force that is
pushing the dice horizontally:

geff =
√
g2 + a2

Where a is the acceleration due to the extra force. The direction of “extra” or fictitious force, in the
car’s frame, is opposite the actual acceleration of the car in the inertial frame.

Fmoving = −mAframe

We really have a fictitious acceleration, we just infer a force because of Newtonian mechanics.

This component combines with gravity as being an equivalent thing.
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2.4.1 Rotating reference frame

First, we need to describe how one reference frame is rotating relative to the inertial frame, specifying
both the rotation axis and rate. We use the vector rotational velocity ω, with the right hand rule.

The linear speed is given by v = rω, and in fact we have that

v = ω × r

The dynamics of the system come from using this derivative relationship. If something is fixed in
the rotating frame, then

dr

dt
= Ω × rinertial

But if rrot is not constant, then
rrot = r1ê1 + r2ê2 + r3ê3

Then dr
dt rot

is given by
dr

dt rot
= dr1

dt
ê1 + dr2

dt
ê2 + dr3

dt
ê3

Seen in the inertial frame,

riner = r1(ê1)iner + r2(ê2)iner + r3(ê3)iner

Taking the derivative of this:Å
dr

dt

ã
iner

= dr1
dt

(ê1)iner + r1(Ω × (ê1)iner) + . . .

Thus we have that Å
dr

dt

ã
iner

=
Å
dr

dt

ã
rot

+ Ω × riner

In fact, this is true for any vector quantity. If we now look at the second derivative (where we are
dealing with some arbitrary vector quantity Q), we will find that

d2r

dt2 iner
= F

m
= r̈ + Ω̇ × r + 2Ω × ṙ + Ω × (Ω × r)

The first term is the Euler force, the second term is the Coriolis effect, and the third term is the
centrifugal force.

The centrifugal force depends on position but not velocity, and is always radially outward from the
the axis of rotation, not the origin. The magnitude is equal to mr⊥Ω2.

The Coriolis force depends on the velocity, not the position, and has magnitude 2mvΩ sin θ, where
θ is the angle between v and Ω. This should be maximal when they are perpendicular.

We can explain tidal forces via the interaction of the centrifugal forces as well as the force due to
gravity of the moon.

Suppose we have a totally water covered planet, with slow rotation, and we want to find the shape it
would have. The buoyancy force is perpendicular to the equilibrium surface, and must be cancelling
the sum of the gravity and tidal forces. If we do this out, we would find that the planet would not
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be spherical. Really, the water surface will follow an equipotential, the net potential energy will be
constant over the whole surface. For the tidal force, this is approximately an ellipsoid.

For a flat rectangular container, filled with some water, we find a quadratic equipotential surface:

U = U0 + 1
2mΩ2x2

The Earth also hastides, the deformation of the solid Earth due to its rotation, but on the order
of magnitude of centimeters (?). Over distance of a few kilometers, the distance can stretch by a
fraction of a millimeter.

3 Elasticity
We know how springs work, we can define the force due to a spring via Hooke’s Law, F = −kx. We
can measure the spring constant by measuring the equilibrium length, and hanging a known mass
from the spring. The gravitational force will balance the spring force, and thus we can solve for k.

If we connect springs in series, we find that the spring constant acts like resistors in parallel:

1
keff

= 1
k1

+ 1
k2

In parallel, we have that the spring constant acts like resistors in series:

keff = k1 + k2

Wires and thin rods can act as a spring. The relevant property describing intrinsic elasticity is
called the Young’s Modulus, Y . This is defined as the stress over the strain. To check units, stress
has units of pressure, and the strain is unitless, thus the Young’s modulus has units of pressure,
Newtons per square meter, or Pascals.

The stress is defined as the force divided by the cross-sectional area, F
A . Strain is defined as the

change in length divided by the equilibrium length, ∆L
L , also known as the fractional stretching.

From these, we find that
Y = FL

A∆L → F = Y A∆L
L

= Y A

L
∆L

We see that the spring constant in terms of the Young’s Modulus, length, and cross-sectional area,
is given by Y A

L .

From this, we can intuitively see that placing them in parallel would increase the cross-sectional
area, increase k, and placing them in series would increase L, decreasing k.

Let us now talk about elasticity in 3 dimensions. Suppose we have a cube of material, embedded
in a larger block of solid material. The cube can compress or grow in all directions equally. This
would be a “bulk” change in volume, and works for liquids as well as solids.

The cube can stretch or shrink in just one linear dimension, this is tension or compression. Young’s
Modulus applies when volume is conserved, and thus this is not the same as the streching of a wire,
since the cross-sectional area decreases as the length increases in a stretching wire, which is not the
same in this linear shift.

We have shear, or skew, as well as twists, or torsion.
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Any elastic modulus involves a strain, a fractional change. For bulk modulus, that is ∆V
V :

B = ∆P
−∆V

V

For shear, the stress is F
A , where F is the sideways force, and A is the area of the plane that it is

acting on, for example:
Fx

Az view

Volume and Surface Forces
We can represent the forces on a volume as a matrix σ, such that:

F =
∑
i

σijdAj

Where dAj is the differential area vector in the j direction. We can write this as a tensor, which is
a linear mapping of one vector to another vector in a geometrically consistent way. This is a rank 2
tensor:

F = Σ dA

A proper stress tensor should be symmetric, for example:

Σ =

2 3 0
3 −2 0
0 0 1


This is symmetric. We want to find the force on a surface described by x2 + 2y + z = 7 at (2, 0, 3).

We begin by finding the normal vector, which is necessary to get the area vector. We can find this
via the gradient of the function at the point given:

∇(x2 + 2y + z) = ⟨2x, 2, 1⟩

Evaluating this at (2, 0, 3) gets ⟨4, 2, 1⟩. We can normalize this:

n̂ = 1√
21

⟨4, 2, 1⟩

The force is given by F = ΣdA:

F =

2 3 0
3 −2 0
0 0 1

 1√
21

[
4 2 1

]
dA = 1√

21
[
14 8 1

]
dA

We have a derivatives matrix, D, such as

D =

 .03 .01 .03
.03 .01 0

−.03 −.06 .02


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This matrix gives the displacement of any point.

We can remove any overall rotation, separating out the anti-symmetric part, which gives us the
strain tensor, E:

E = 1
2(D + DT )

In this case, we have that

E = 1
2

 .03 .01 .03
.03 .01 0

−.03 −.06 .02

 +

.03 .03 −.03
.01 .01 −.06
.03 0 .02

 =

.03 .02 0
.02 .01 −.03
0 −.03 .02


This is the strain tensor, and is a symmetric matrix. The trace of E divided by 3 tells us the overall
dilatation, e, also called spherical strain. The trace is given by the sum of the on-diagonal elements,
in this case, .03 + .01 + .02 = .06, so e = 1

3 .06 = .02.

We can write the strain tensor as E = e1 + E′, which we can solve for E′:

E′ = E − e1 =

.01 .02 0
.02 −.01 −.03
0 −.03 0


We note that this matrix has 5 degrees of freedom, 6 independent values and then the constraint
that it must be traceless.

If the elastic response of the material is linear and rotationally invariant, then the most general
possible relation is

Σ = αe1 + βE′

Compare this to the linear version, were we said that F
A = Y ∆L

L . We that stress is equal to a scaled
version of strain.

We can expand out E′:
Σ = αe1 + β(E − e1) = (α− β)e1 + βE

An alternative set of parameters is the “Lamé parameters”, where α− β is 3λ and β is 2µ.

We can solve for E now:
E = 1

3αβ [3αΣ − (α− β)(trΣ)1]

In some special caese, we can relate α and β to elastic moduli that we have already introduced. If
we have the bulk modulus, where we have the effect of a pressure change with no shear:

Σ = −p1

And thus
E = p

αβ
[−β] 1 = − p

α
1

From the definition of the bulk modulus, we have that

BM = α

3
We can also define the shear modulus in the presence of no volume change:

SM = β

2
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4 Solid Body Rotation
There was a period where I didn’t really take notes, these are the lecture notes starting at 11/29/22.

Homework 11 Question 5 asks you to analyze a sliding cube that hits a low step, causing it to
tip. When the cube hits the lip, the lip applies force to suddenly stop that corner of the cube
from sliding. When that happens, are any of our 3 quantities conserved? Kinetic energy is not
conserved, since there is a force over a small distance We can think of the cube or the lip being
slightly deformed as the cube comes to a stop, so we have work done by the contact force. The
linear momentum is not conserved, since we have an impulse acting on the cube.

The angular momentum is conserved. There are two possible origins that we could use. If we choose
the lip corner as the origin, then the sliding cube has nonzero angular momentum to begin with.
This will be given by L = r × p, or r⊥p. At the time of collision, the force from the lip on the cube
applies 0 torque, since it is acting at the origin. Thus the angular momentum will not change with
this as our origin.

The other choice of origin would be the center of mass of the cube. If so, the sliding cube has 0
angular momentum initially. In this case, the force from the lip does apply a torque to the cube,
and that starts to make it rotate around the origin. If we pick this as the origin, we see that it is
not conserved.

Thus we see that the conservation of the angular momentum depends on the choice of origin.

To find the total kinetic energy of a system that is rotating and has a moving center of mass, when
should you include a translation kinetic energy for the center of mass motion, and when should you
not use one?

Suppose we have a uniform rod, an we imagine that it is rotating around an axis at the end, and its
center of mass is at the center of the rod. If we have arbitrary motion of the center of mass, the
safe way to write out the kinetic energy will be

Ktot = KCM Translational +KRotational about CM

However, oftentimes (as in our rod case), the object is not rotating about the center of mass. If the
CM is travellling along a circular path, you can calculate the moment of inertia around the actual
axis:

Ktot = KRotational about Axis = 1
2Iaxisω

2

These two are equivalent ways of writing out the kinetic energy, but we need to remember that
ICM ̸= Iaxis, although they can be related by the parallel axis theorem.

We previously computed the inertia tensor for a rectangular book along 3 axes:

I =

Ixx Iyy
Izz


Symmetric objects rotating around their center of mass have obvious axes, and a diagonal matrix
for their inertia tensor. The “principal axes” are easy to see, they will give us that

L = Iaxisω

In other words, the angular momentum is parallel to the angular velocity.
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However, not all systems have obvious principal axes. For example, consider a cube of side length a
and mass M rotating around its corner. If we find the inertia tensor for the cube:

I = Ma2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


So, if we rotate this cube around the x̂ axis, L is not in the x̂ direction:

L = Iω = Ma2ω

 2/3
−1/4
−1/4


Thus we have that x̂ is not a principle axis for the cube rotating around its corner. However,

consider ω = ω√
3

1
1
1

. In this case:

L = Iω = Ma2

1/6
1/6
1/6

 ω√
3

and thus we have that this ω is a principal axis, since the angular momentum is parallel to the axis
of rotation.

Every inertia tensor has at least 3 principal axes, and has 3 orthogonal principal axes, which we can
find using eigenvalue analysis. In other words, a different coordinate system can be found in which
I is diagonal. We want to find L||ω, so Iω = λω, which we can rewrite as (I − λ1)ω = 0.

For the cube, this becomes

det

2/3 − λ −1/4 −1/4
−1/4 2/3 − λ −1/4
−1/4 −1/4 2/3 − λ

 = 0 → λ3 − 2λ2 + 55
48λ− 121

864 = 0 →
Å
λ− 1

6

ãÅ
λ− 11

12

ã2
= 0

Thus we have eigenvalues 1/6, 11/12, and 11/12. We have already found the eigenvector for 1/6,
and if we plug in 11/12 for λ, and apply it against an unknown ω, we expect to get 0, and this
finds the eigenvector. There are an infinite number of solutions for this case, so we can just take
two orthogonal solutions.

4.1 Precession
When we have a bicycle wheel on a post, and the radial distance is D, and the wheel has mass m
and rotation rate ω, the angular momentum around the post will be Ipostω. In this case, I = MR2,
where we treat it like a torus, as all the mass is concentrated on the edge. Thus we have that
L = MR2ω. The torque will be given by DMg = dL

dt .

From these, we can find the precession rate:

Ω = dϕ

dt
= DMg

MR2ω
= Dg

R2ω

We see that larger ω means smaller Ω.
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For a small gyroscope toy, where it is tipped, rather than held radially, the torque once again comes
from the force of gravity, and the tip is given by an angle from vertical θ. We know that L̇ = τ . In
the body frame of the gyro rotor, L ≈ λ3ωê3, where we are in some body frame coordinates ê1, ê2,
and ê3.

The effect of the torque will then be
τ = λ3ωˆ̇e3

We can find that
|ˆ̇e3| = |τ |

λ3ω
= mgD sin θ

λ3ω

We then note that |ˆ̇e3| = Ω sin θ, where Ω is the rate at which ϕ goes around a circle, or the rate of
precession.

4.2 Lamina
Suppose we want to calculate the inertia tensor for a lamina, or thin planar sheet. Suppose it is
laying in the xy plane. We know that the z axis is guaranteed to be a principal axis, regardless of
the shape in the xy plane. As a note, any axis parallel to a principal axis is also a principal axis.

Suppose we have a triangular lamina, with corners at (1, 0, 0), (0, 1, 0), and (0, 0, 0).

We can compute terms in the inertia tensor:

Ixy =
∫

shape
−xy dm

Where in this case dm = σ dx dy, the mass of a small section of the lamina is given by the area and
the mass per unit area. Thus the integral becomes

Ixy = −σ
∫ 1

0
dx

∫ 1−x

0
xy dy

We would have to do the y integral first, due to the limit of integration, and then do the x integral.

4.3 General Rotational Dynamics
We know that torque changes angular momentum:

∂L

∂t
= τ

This relationship is true in the “space” frame, the inertial reference frame of the room or wherever
we are. In the body frame, the reference frame fixed in the object with unit vectors ê1, ê2, and ê3,
which correspond to principal axes, we have a noninertial reference frame. We know the relationship
between the space frame and the body frame, we can recall thatÅ

dQ

dt

ã
iner

=
Å
dQ

dt

ã
rot

+ Ω × Q

For this kind of rotation, we generally use ω, rather than Ω, so we can write this out for the angular
momentum: Å

dL

dt

ã
iner

=
Å
dL

dt

ã
rot

+ ω × L
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We know that the left term is the torque. Since we have chosen our basis vectors in the body frame
to be along principal axes, the angular momentum in the body frame coordinates will be

Lrot =

λ1ω1
λ2ω2
λ3ω3


Where the λs are the eigenvalues of the inertia tensor. Thus, we have that

τ =

λ1ω̇1
λ2ω̇2
λ3ω̇3

 +

ω2ω3(λ3 − λ2)
ω3ω1(λ1 − λ3)
ω1ω2(λ2 − λ1)


We can now rewrite this as 3 equations:

λ1ω̇1 = (λ2 − λ3)ω2ω3 + τ1

λ2ω̇2 = (λ3 − λ1)ω3ω1 + τ2

λ3ω̇3 = (λ1 − λ2)ω1ω2 + τ3

These 3 equations are known as Euler’s equations. They describe how ω changes as seen in the
body frame. Even if the torque is 0, ω can change. This case is called “free precession”.

4.3.1 Free Precession

In general, if λ1 ̸= λ2 ̸= λ3, if the object is spinning with ω close to a principal axis, lets say
ω ≈ ω3ê3 with ω1 ≪ ω3 and ω2 ≪ ω3, then we can write out the Euler equations:

ω̇3 = λ1 − λ2
λ3

ω1ω2

We see that ω1ω2 is two small numbers. On the other hand, if we look at

ω̇1 = λ2 − λ3
λ1

ω2ω3

We see that this has only 1 small number. Thus we have that ω3 is approximately constant, while
ω1 and ω2 vary. We can take another derivative:

ω̈1 = λ2 − λ3
λ1

ω̇2ω3

Where we used the fact that ω̇3 ≈ 0. Inserting the Euler equation for ω̇2:

ω̈1 =
Å
λ2 − λ3
λ1

ãÅ
λ3 − λ1
λ2

ã
ω2

3ω1

We see that this is similar to the harmonic oscillator if this constant term multiplied against ω1 is
negative. If it is negative, then ω1 behaves as a harmonic oscillator with

ωosc = ω3

 
−
Å
λ2 − λ3
λ1

ãÅ
λ3 − λ1
λ2

ã
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This tells us that ω wobbles around ê3 with frequency ωosc in the body frame. However, this is only
true if the factor is negative. If the factor is positive, then we have exponential growth, the rotation
axis would be unstable.

Another case of this is if λ1 = λ2 = λ12. In this case, Euler’s equations become

λ3ω̇3 = 0

λ12ω̇1 = (λ12 − λ3)ω2ω3

λ12ω̇2 = (λ3 − λ12)ω3ω1

If we once again assume that ω is close to ê3, we will find that

ω̈1 = −(λ12 − λ3)2

λ2
12

ω2
3ω1

In this case, we have a stable oscillation, with

ωosc = |λ12 − λ3|
λ12

ω3

The direction of the rotation/precession depends on whether λ12 > λ3 or vice versa. We have that

ω = (ω0 cos Ωt,−ω0 sin Ωt, ω3)

And we can then compute the angular momentum:

L = (λ12ω0 cos Ωt,−λ12ω0 sin Ωt, λ3ω0)

Let use note some key features. In the body frame, ê3 is fixed, while ω and L rotate (wobble)
around it. In the space frame, there is no torque, so L is fixed, and ω and ê3 rotate (wobble).

In either frame, we note that L3 is constant, along ê3.

For a spinning gyroscope or top, the math is tedious, but we can work out the Lagrangian using
the three Euler angles as coordinates, and use the standard tool, the Euler-Lagrange equation, to
find the equations of motion for the coordinates. If we do out the tedious algebra, we have that the
equation of motion for θ is given by

λ12θ̈ = λ12ϕ̇
2 sin θ cos θ − λ3(ψ̇ + ϕ̇ cos θ)π̇ sin θ +MgR sin θ

Where ψ is the rotation of the top along its axis, θ is the angle from the vertical, and ϕ is the sweep
angle from some starting orientation. One special case of this is steady precession, motion with
constant θ. Thus we have that θ̇ = θ̈ = 0, and with constant ϕ̇ (which we relabel Ω):

0 = λ12Ω2 sin θ cos θ − λ3ω3Ω sin θ +MgR sin θ

This is a quadratic equation for Ω, so we have two solutions for Ω, the two rotation rates which
represent steady precession, without nutation. Nutation is when we allow θ to vary. We can analyze
this using energy conseration, using the conserved quantities:

pψ = λ3(ψ̇ + ϕ̇ cos θ) = L3

pϕ = λ12 sin2 θϕ̇+ L3 cos θ = Lz

We can use these to eliminate the ϕ̇ and ψ̇ variables. We then have a differential equation for only
θ(t), and we can describe this system using an effective potential, Ueff (θ):

1
2Iθ̇

2 + Ueff (θ) = E

Where E is a constant.
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5 Chaos
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