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0.1 Statevectors and Operators
What are the properties of a vector in a vector space? One of the first properties is that we can add
two vectors:

|n⟩ + |m⟩ = |p⟩

where by the definition of a vector space, |p⟩ is a member of the vector space. There are also a
bunch of other properties that the vectors in these vector spaces have, such as associativity, the
definition of an inner/scalar product, etc. Then we have operators, which act on vectors in our
vector space, and return another vector:

Q̂ |n⟩ = |m⟩

Classical mechanics deals with phase space, in 1D we have two variables, position and momentum
in a single direction. Newton’s Laws tell us that dpx

dt = Fx → px(t) = px(0) +
∫
Fx dt. We also have

from the definition of momentum px = mvx → px

m = dx
dt → x(t) = x(0) +

∫ px(t)
m dt. We see that we

know everything that happens at any time if we know the starting conditions and all the forces.
Thus the vector formed by x and px represents the state of the system.

In quantum mechanics, we still have a statevector, such as |S(t)⟩, which has name S and depends
on the variable t, and is a vector via the braket notation. This represents the state of a quantum
system. In quantum mechanics, variables like x and p have operators x̂ and p̂, and all physical
properties (measurable things) also have operators. For example, L, the angular momentum, has
an operator that is a function of the operators for position and momentum. This is known as
canonical quantization, the replacement of the variables with the operators that represent them.
Other operators are things like intrinsic spin, ŝ, which has no spatial dependence (for an electron).

Also note that operating with something like x̂ does not return the value of x. We have a Hamiltonian
operator Ĥ, which is the total energy operator. |S(t)⟩ evolves in time via

Ĥ |S(t)⟩ = iℏ
∂

∂t
|S(t)⟩

This relationship holds because it matches what we expect, it isn’t something that we have derived
from mathematics or pure physical laws, we use it because it works.

Every physical quantity q has an operator Q̂. The operator Q̂ has eigenstates |q⟩, for which the
following relationship is true

Q̂ |q⟩ = q |q⟩

Note that we can either have a discrete set of eigenstates or continuous set of eigenstates. For
example, systems such as the particle in a box or a hydrogen atom has a discrete list of possible
energy measurements. Meanwhile, measuring something like the position of a free particle can
return a continuous set of eigenstates.

Also note that the eigenvalues must be real, as the operators represent physical measurables.

We also have that the eigenstates are orthogonal (or can be made orthogonal), normalizable and
complete. Our proof for completeness is that if they weren’t complete, the physics wouldn’t make
sense and therefore it must form a basis:

|S(t)⟩ =
∑
q

aq(t) |q⟩
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The probability comes into play when we attempt to measure Q̂. This will return one of the
eigenvalues, with probabilities given by the magnitude of the coefficient:

P (q) = |aq(t)|2

Suppose we have some vector A on a 2D plane. We can break this down into components and find
Ax and Ay. However, we could also use a different coordinate system, and we could find A′

x and
A′
y. We could do this for any basis that we wanted. We know from linear algebra that finding the

components is given by taking the dot product with the unit vector in the direction that we want.
This same principle holds true in quantum mechanics.

Suppose we wanted to represent |S(t)⟩ in the position basis (1D). We can dot the state with the
unit vector in that direction:

ΨS(x, t) = ⟨x|S(t)⟩

and this gets us the time and position dependent wavefunction for the state. For momentum:

ΦS(p, t) = ⟨p|S(t)⟩

0.2 Operators and Changing Bases
Operators are just things that map from objects in our space to other objects in our space:

|β⟩ = Q̂ |α⟩

We are generally working in an orthogonal and normalized basis, where the basis vectors are discrete,
|en⟩. We can expand out each of our kets:

|α⟩ =
∑
n

an |en⟩ |β⟩ =
∑

bn |en⟩

We can then substitute them into our operator expression:∑
bn |en⟩ =

∑
Q̂an |en⟩

Now using the orthogonality of the basis, we can dot both sides with ⟨em|:

bm =
∑

an ⟨em|Q̂|en⟩

We see that we have found the component in the m direction of the ket |β⟩. We also see that
⟨em|Q̂|en⟩ = Qmn, a matrix element of the matrix representation of the Q̂ operator. Also note that
from this, we have that Q̂ must be square.

When we have an inner product ⟨f |g⟩, and there are two main ways of going about computing it.
The definition of this inner product is given by

⟨f |g⟩ =
∫
f∗(x)g(x) dx

This works for continuous variables, but what if we have discrete vectors? In this case, the bra is a
row vector, with conjugated elements, and then a ket is given by a column vector. Thus when we
compute the inner product:

⟨f |g⟩ = f∗
1 g1 + f∗

2 g2 + . . .
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If we compare these two, we see that via the definition of an integral, the integral method is just a
continuous version of the discrete sum, and the two processes are identical.

Let us define something that we claim is an operator:

P̂α = |α⟩ ⟨α|

Suppose this operates on |α⟩:
P̂α |α⟩ = |α⟩ ⟨α| |α⟩ = |α⟩

We see that this takes a vector to a vector. Suppose we have it operate on an arbitrary vector |β⟩:

P̂α |β⟩ = |α⟩ ⟨α|β⟩ = ⟨α|β⟩ |α⟩

We can see that ⟨α|β⟩ is the amount of |β⟩ in the |α⟩ direction.

This is known as the projection operator.

We can define another operator: ∑
P̂n =

∑
n

|en⟩ ⟨en|

If we think about this, we see that this is just the identity operator, it does nothing to a vector:Ä∑
P̂n
ä

|α⟩ = |α⟩

We can define a continuum version: ∫
|x⟩ ⟨x| dx = 1

Suppose we have an abstract state |S(t)⟩:

|S(t)⟩ = 1 |S(t)⟩ =
∫
dx |x⟩ ⟨x|S(t)⟩

Now we look at the inner product, and we see that this is just Ψ(x, t):

|S(t)⟩ =
∫
dx Ψ(x, t) |x⟩

We can do the same thing in the momentum basis:

|S(t)⟩ =
∫
dp Φ(p, t) |p⟩

This is the basis for the Fourier Transform.

Let us now apply this identity operator. We can talk about spin-1
2 particles, as well as combining

angular momenta.

Suppose we have a momentum space wavefunction:

Ψ(p, t) = ⟨x|S(t)⟩

If we want to find Φ(p, t) = ⟨p|S(t)⟩, We can use the fact that the identity operator is given by

1 =
∫
dx |x⟩ ⟨x|
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And we can plug this into our inner product:

⟨p|S(t)⟩ = ⟨p|
∫
dx |x⟩ ⟨x|S(t)⟩

= ⟨p|
∫
dx |x⟩ Ψ(x, t)⟩ =

∫
dx ⟨p|x⟩ Ψ(x, t)

The inner product ⟨p|x⟩ is the position eigenfunction in the momentum basis. We can flip this using
the property that you have to complex conjugate it:

=
∫
dx ⟨x|p⟩∗ Ψ(x, t)

Now using the fact that ⟨x|p⟩∗ =
»

1
2πℏe

−ipx:

Φ(p, t) =
∫
dx

…
1

2πℏe
−ipx Ψ(x, t)

and we see that we have just derived the Fourier transform.

What if we want to convert from the momentum wavefunction to the energy wavefunction like we
did last time, but we put in another identity operator:

Φ(p, t) =
∑

⟨p|n⟩ ⟨n|S(t)⟩ =
∑
n

⟨p
∫

|x⟩ ⟨x| dx|n⟩ ⟨n|S(t)⟩

=
∑
n

∫
⟨p|x⟩ ⟨x|n⟩ ⟨n|S(t)⟩

We know that ⟨x|n⟩ = ψn(x), and ⟨n|S(t)⟩ = cn:

=
∑ ∫

⟨x|p⟩∗ ψn(x)cn =
∑
n

∫ … 1
2πℏe

−ipx/ℏψn(x) dx cn

Which is the more convential definition of a Fourier transform.

What is x̂ in the p basis? We have our state S(t), and we want to be in the p basis, so we set up
something like:

⟨p|X̂|S(t)⟩

where X̂ is the unknown position operator. We want to use the fact that X̂ |x⟩ = x |x⟩, and then
the identity, which we can stick in the second slot:

⟨p|X̂|S(t)⟩ = ⟨p| X̂
∫

|x⟩ ⟨x| |S(t)⟩ dx

=
∫

⟨p|x⟩xΨ(x, t) dx =
∫ … 1

2πℏe
−ipx/ℏxΨ(x, t) dx

Now we note that the partial with respect to p of e−ipx/ℏ = − ix
ℏ e

−ipx/ℏ.
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0.3 Bloch Sphere
When talking about spin, we have to think about the direction, and the convention is to use:

|↑⟩z = χz+ |↓⟩z = χz−

We have that we can use the z direction spins to form the x direction spin, and the same for the y
direction.

χx± = 1√
2
(
χz+ ± χz−

)
χy± = 1√

2
(
χz+ ± iχz−

)
We want to work towards something known as the Bloch sphere.

What is the most general state that we can write in the z basis:

χ = aχz+ + bχz−

We have to constrain a and b in order to make this physically realisable, and we need |a|2 + |b|2 = 1,
to make the probability equal to 1. In general, we have that

a = |a|eiγa

and similarly for b.

We can write out the general state:

χ = eiγa
Ä
|a|χz+ + |b|ei(γb−γa)χz−

ä
WLOG, we can set γa = 0, because we only care about the phase difference between the two, now
that we’ve factored it out, its an overall phase factor that doesn’t affect the total state.

Bloch then constructs a state where

|a| = cos θ2 |b| = sin θ2
and where γb − γa = φ. We can write out the general state now:

χ = cos θ2χ
z
+ + sin θ2e

iφχz−

Note that this is a constructed state. Suppose we choose θ = 0, we notice that we are left with just
the up spin. If we instead choose θ = π, we have the down spin. We see that rotation by π switches
us from up spin to down spin.

Suppose we choose θ = π
2 . We see that we have

χ = 1√
2

Ä
χz+ + eiϕχz−

ä
= χx+

We see that rotating halfway has now put us in the x spin direction. If we rotate from here and
change ϕ to π, which then changes the sign of the second term, and gives us χx−. Bloch mapped the
modifications to θ and ϕ to spherical coordinates. If we have some general state, we can define it
using its θ and its ϕ. Since everything is normalized, we have that our states live on the surface of a
sphere, which is known as the Bloch sphere.
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0.4 When Hilbert Spaces Collide
Suppose we have two spin-1

2 particles that are interacting, how do we deal with that. The classical
example is angular momentum states.

We have some particle in state |S1,m1⟩. This is a state with total angular momentum characterized
by the quantum number S1.We have a total spin operator:

S(1)2 |S1,m1⟩ = S1(S1 + 1)ℏ2 |S1,m1⟩

We can also do it in a certain direction:

S(1)
z |S1,m1⟩ = m1ℏ |S1,m1⟩

Where the superscript denotes the particle that we are looking at.

In the Bohr orbit model (Bohrbit), we had some quantized angular momentum Ln.

We can talk about particle number 2 having the same properties:

S(2)2 |S2,m2⟩ = S2(S2 + 1)ℏ2 |S2,2⟩

S(2)
z |S2,m2⟩ = m2ℏ |S2,m2⟩

How do we define the composite state of these two? The composite state is labelled:

|S1, S2,m1,m2⟩

This state has to obey certain rules, the rules given for both states individually must hold for the
final state:

S(1)2 |S1, S2,m1,m2⟩ = S1(S1 + 1)ℏ2 |S1, S2,m1,m2⟩

S(2)2 |S1, S2,m1,m2⟩ = S2(S2 + 1)ℏ2 |S1, S2,m1,m2⟩

S(1)
z |S1, S2,m1,m2⟩ = m1ℏ |S1, S2,m1,m2⟩

S(2)
z |S1, S2,m1,m2⟩ = m2ℏ |S1, S2,m1,m2⟩

If we add the last two equations:

(S(1)
z + S(2)

z ) |S1, S2,m1,m2⟩ = (m1 +m2)ℏ |S1, S2,m1,m2⟩

We tentatively call this new operator Sz.

From now on, we let S1 = 1
2 , and S2 = 1

2 , we leave the general case and restrict it to two spin-1/2
particles. This gets us that m1 = ±1/2 and m2 = ±1/2.

We can then represent the system schematically as

|↑↑⟩ |↑↓⟩ |↓↑⟩ |↓↓⟩

We can now make some guesses, and for the first state we say that since m1 = m2 = 1/2, m = 1.
Similarly, for the last state, we have that m1 = m2 = −1/2, and thus m = −1. For the middle two
states, we have that m = 0. However, when m = 0, what is the value of S? Is it 0 or is it 1 like
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the other states? We have another operator that we can use, the ladder operators for the angular
momentum:

S± |S,m⟩ = ℏ
»
S(S + 1) −m(m+ 1) |S,m± 1⟩

We can apply the raising and lowering operators to the composite states:

S
(1)
−

∣∣∣∣12 , 1
2 ,

1
2 ,

1
2

∑
= ℏ

∣∣∣∣12 , 1
2 ,−

1
2 ,

1
2

∑
S

(2)
−

∣∣∣∣12 , 1
2 ,

1
2 ,

1
2

∑
= ℏ

∣∣∣∣12 , 1
2 ,

1
2 ,−

1
2

∑
We also have the Sz operator:

S(1)
z

∣∣∣∣12 , 1
2 ,m1,m2

∑
= m1ℏ |12 ,

1
2 ,m1,m2⟩

If we add the usage of the lowering operators on both particles:

(S(1)
− + S

(2)
− )

∣∣∣∣12 , 1
2 ,

1
2 ,

1
2

∑
= ℏ
Å∣∣∣∣12 , 1

2 ,−
1
2 ,

1
2

∑
+
∣∣∣∣12 , 1

2 ,
1
2 ,−

1
2

∑ã
If we operate the lowering operator again on this state:

(S(1)
− + S

(2)
− )ℏ

Å∣∣∣∣12 , 1
2 ,−

1
2 ,

1
2

∑
+

∣∣∣∣12 , 1
2 ,

1
2 ,−

1
2

∑ã
= 2ℏ2

∣∣∣∣12 , 1
2 ,−

1
2 ,−

1
2

∑
We see that

(S(1)
− + S

(2)
− )2

∣∣∣∣12 , 1
2 ,

1
2 ,

1
2

∑
= 2ℏ2

∣∣∣∣12 , 1
2 ,−

1
2 ,−

1
2

∑
We can define 3 new states: ∣∣∣∣12 , 1

2 ,
1
2 ,

1
2

∑
= |1, 1⟩

1√
2

ï∣∣∣∣12 , 1
2 ,

1
2 ,−

1
2

∑
+
∣∣∣∣12 , 1

2 ,−
1
2 ,

1
2

∑ò
= |1, 0⟩∣∣∣∣12 , 1

2 ,−
1
2 ,−

1
2

∑
= |1,−1⟩

We have to show that S2 = [S(1) + S(2)]2
∣∣1

2 ,
1
2 ,

1
2 ,

1
2
〉

= S(S + 1)ℏ2 |1
2 ,

1
2 ,

1
2 ,

1
2⟩.

These are known as triplet states:

|1, 1⟩ = |↑, ↑⟩ |1, 0⟩ = 1√
2

(|↑, ↓⟩ + |↓, ↑⟩) |1,−1⟩ = |↓, ↓⟩

More compactly, we have S = 1, and varied m = 1, 0,−1. We need another state, which we can
construct:

1√
2

(|↑, ↓⟩ − |↑, ↓⟩)

This is called the singlet state, and it has the property that the total spin is 0, S = 0 and m = 0.
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We can generate any general composite state |s,m⟩:

|s,m⟩ =
∑

m1+m2=m
Cs1,s2,s
m1,m2,m |s1, s2,m1,m2⟩

Where C represents the Clebsh-Gordan coefficients, which can be read from a table.

We can also represent these composite states using a schematic vector addition diagram, one a 3-d
sphere with axes being each spin direction.

1 Identical Particles
In atomic potentials, we deal a lot with central potentials, and we can also talk about non-interacting
particles, such as bosons and fermions. We can also talk about exchange interactions, which is when
non-interacting particles such as fermions and bosons still exhibit properties regarding their states
with each other.

We can write out the classical H for a particle with some potential V (r):

H = |p|2

2m + V (r)

And we can write out the momentum operator:

p̂ = ℏ
i
∇

We can put this together to get the quantum Hamiltonian

Ĥ = − ℏ2

2m∇2 + V (r)

How would we extend this to a second particle in the same system?

We add the kinetic energies, and we claim that the potential will be some function of the two
positions.

H = |p1|2

2m1
+ |p2|2

2m2
+ V (r1, r2)

Converting this to the quantum operator:

Ĥ = − ℏ2

2m1
∇2

1 − ℏ2

2m2
∇2

2 + V (r1, r2)

Where ∇2
j = ∂2

∂x2
j

+ ∂2

∂y2
j

+ ∂2

∂z2
j
. We can write down the Schrodinger equation:Å

− ℏ2

2m1
∇2

1 − ℏ2

2m2
∇2

2

ã
Ψ(r1, r2, t) + V (r1, r2)Ψ = iℏ

∂

∂t
Ψ(r1, r2, t)

We can attempt to do the separation of variables that we did the first time we looked at this
equation:

Ψ(r1, r2, t) = ψ(r1, r2)Φ(t)

If we insert this into the equation, and then separate this into two equations,

iℏ
∂Φ(t)
∂t

= EΦ(t)
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−ℏ2

2

Å∇2
1

m1
+ ∇2

2
m2

ã
ψ + V ψ = Eψ

Solving the Φ equation:
Φ(t) = e−iEt/ℏ

We see that we have the same thing as the one-particle result.

For a special case, V (r1, r2) = V (r1) + V (r2). We are essentially saying that there is no interaction
between the two particles, there is no crossterm. We write down that

ψ(r1, r2) = ψa(r1)ψb(r2)

We can do separation of variables on this, and we find thatï
− ℏ2

2m1
∇2

1 + V (r1)
ò
ψa(r1) = Eaψa(r1)ï

− ℏ2

2m2
∇2

2 + V (r2)
ò
ψb(r2) = Ebψb(r2)

We have two separate Schrodinger equations. We can put together the overall wavefunction:

Ψ(r1, r2, t) = ψa(r1)ψb(r2)e−iEt/ℏ

Where E = Ea + Eb. This is a solution because the Schrodinger equation is linear. Suppose we
have a state

Ψ = 3
5ψa(r1)e−iEat/ℏψb(r2)e−iEbt/ℏ + 4

5ψc(r1)e−iEct/ℏψd(r2)e−iEdt/ℏ

What if we measure the energy of particle 1 and get Ea, and then measure the energy of the second
particle, we see that we must get Eb, because the measurement collapsed it to the first term.

This is what lead to the idea of entanglement, where measuring one particle instantly gives
information about the second particle. This does not violate relativity, since we cannot use it to
signal faster than the speed of light.

To recap, we took the Schrodinger equation for two particles, with time dependence, and then
separated variables to get a time-independent equation. We then separated again, to get two
Schrodinger equations, each for the wavefunction of a single particle, with no time dependence.

Suppose the particles exist in the same harmonic oscillator potential. If we suppose that ψa is the
ground state, and ψb is the first excited state, and we do a measurement, and we find that the
particle is at some x value. Note that we said “the” particle, because we don’t know which one it
is. We have some detector that beeps at that particular position, but we have no way of knowing
which one we measured. This is different from the classical case, where we know about the position
and momenta of both particles or objects, since the previous state can predict the future state with
perfect accuracy.

However, since we have two Gaussian packets representing the two particles, when the two are really
far from each other, we can pretty easily label each particle, but after they interact, we cannot tell
them apart. This is forced upon us by the statistical nature of the quantum states.
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Gibbs noted this around 1874, where he realized that using indistinguishable particles in his classical
model of the ideal gas was the only way to get correct results, something known as the Gibb’s
paradox.

if they are indistinguishable, then writing

ψa(R1)ψb(r2)

is no good, because this is explicitly distinguishable.

We can instead write it out using linear combinations:

ψ(r1, r2) = A [ψa(r1)ψb(r2) + αψa(r2)ψb(r1)]

And we also claim that
|ψ(r1, r2)|2 = |ψ(r2, r1)|2

This set of two equations implies two things:

|α|2 = 1 α = α∗

This tells us that α = ±1.

There are only two things that are allowed:

ψ(r1, r2) = A [ψa(r1)ψb(r2) ± ψa(r2)ψb(r1)]

This relationship actually leads to the difference between bosons and fermions. If we first look at
the − states, and we let a = b, we have them in the same state

ψ(r1, r2) = 0

We see that we have the Pauli exclusion principle, we can’t have Fermions in the same state, the
states cancel out and the wavefunction is 0. If we instead look at the Bosons, they add, and the
wavefunction is nonzero.

If the particles are distinguishable, we can just use a product state. For these “distinguishons”:

Ψd(x1, x2, t) = ψa(x1, t)ψb(x2, t)

For Fermions:
ΨF (x1, x2, t) = ψa(x1, t)ψb(x2, t) − ψa(x2, t)ψb(x1, t)

And for Bosons:
ΨB(x1, x2, t) = ψa(x1, t)ψb(x2, t) + ψa(x2, t)ψb(x1, t)

where we have dropped the normalization constants.

We can take an expectation value:
⟨(x1 − x2)2⟩

And we can do tis for 3 different cases, distinguishable particles, Fermions, and Bosons. This is like
a measure of how far apart the particles are on average. We find that for distinguishable particles:

⟨(x1 − x2)2⟩d = ⟨x2⟩a + ⟨x2⟩b − 2 ⟨x⟩a ⟨x⟩b
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Where we can drop the particle state labels because x is just a variable that we are integrating over.

For Bosons and Fermions:

⟨(x1 − x2)2⟩ = ⟨x2⟩a + ⟨x2⟩b − 2 ⟨x⟩a ⟨x⟩b ∓ | ⟨x⟩ab |2

Where ⟨x⟩ab =
∫
xψ∗

a(x)ψb(x) dx. We see that we have an added term to the Distinguishon case. This
extra term is sometimes called an overlap integral, because its based on whether the wavefunctions
are overlapping, otherwise it is 0. If the two are very far apart, we see that we can indeed point
out the two particles, just like the distinguishable case. If there is an overlap, it may be a nonzero
term. We see that this adds the idea of an iteraction between particles, the Fermions repel while
the Bosons attract each other. This is sometimes called the exchange force, but it’s not really a
Newtonian force.

So far, we have considered only the spatial part of the state function. We also need to look at the
spinor: Å

a(t)
b(t)

ã
= χ(t)

Where a and b represent the time evolution of spin up and spin down respectively.

Thus what we really care about is (+ is Bosons, and − is Fermions):

Ψ(r1, r2, t)χ(1, 2, t) = ±Ψ(r2, r1, t)χ(2, 1, t)

Recall that when we looked at the spin 1/2 particle angular-momentum states (the triplet states),
we see that if we swap the particle spins, then we have no change, the triplet states are even. If we
have the singlet state, we see that flipping the spins gives the same state but with an added sign
change. Since Fermions are spin-1/2, we have to get a − out somewhere. Either the spin part or
the spatial part must provide the sign. For the triplet states, the spatial part must provide the sign,
and for the singlet state, the spin state must provide the negative.

2 Atoms
We can write out our Hamiltonian:

Ĥ =
N∑
j

ï
ℏ2

2m∇2
j − (Ze)(e)

4πϵ0
1

|rj |

ò
Where the sum over j is summing over all electrons, and the second term is the Coulomb interaction,
Z is atomic number.

We can now do the interaction term:
N∑
i=1

N∑
j=1,j ̸=i

1
2

1
4πϵ0

e2

|ri − rj |

Where the 1
2 removes double counting, and we remove self-interactions using the fact that j ̸= i.

Ĥ =
N∑
j

ï
ℏ2

2m∇2
j − (Ze)(e)

4πϵ0
1

|rj |

ò
+

N∑
i=1

N∑
j=1,j ̸=i

1
2

1
4πϵ0

e2

|ri − rj |
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We can still separate out the Schrodinger equation:

Ĥψ(r1, r2, . . . , rN ) = Eψ

We begin by ignoring the electron-electron interaction term for now. We define Ĥ0 as the Hamiltonian
ignoring the interactions. We can do this for Helium:

Ĥ0 = − ℏ2

2m∇2
1 − 2e2

|r1|(4πϵ0) − ℏ2

2m∇2
2 − 2e2

|r2|(4πϵ0)

We can once again separate variables, and we have that E = En + En′ .

When we solved the Hydrogen atom, we found that

En = − m

2ℏ2

Å
e2

4πϵ0

ã2 1
n2

Switching this to Helium, we know that e2 goes to 2e2 for both electrons:

En,n′ = − m

2ℏ2

Å 2e2

4πϵ0

ã2 1
n2 − m

2ℏ2

Å 2e2

4πϵ0

ã2 1
n′2

We see that we have just two hydrogen energies put together, with a changed term on the inside.

We guess that the lowest state is n = n′ = 1. We find that E1,1 = 8 × −13.6 eV, which is −109
eV. The experimental value for this is −78.975 eV. We have ignored the fact that the electrons
interact with each other, which causes the difference from the experimental value. Constructing the
interaction term:

1
4πϵ0

e2

|r1 − r2|

The first thought is to plug in a “typical” value for the difference of the vectors. For Hydrogen, this
would be the Bohr radius:

a = 4πϵ0
me2 = 0.529Å

If we now insert in 2e2 instead of e2, we have that the Bohr radius for Helium would be ã = 0.264Å.
Plugging this into the interaction term, we have that ∆Eee = 54.4 eV. Adding this to the value we
computed for E1,1, we find −54.6 eV. Thus we see we’ve overcompensated, the Bohr radius is not a
good typical value.

Instead, let us use the average interaction:≠ 1
4πϵ0

e2

|r1 − r2|

∑
Pulling the constants out:

= e2

4πϵ0

≠ 1
|r1 − r2|

∑
If we use this, we find that E1,1 = −75 eV, compared to the experimental −78.975 eV.

We have the Hydrogen state functions, with just the spatial component:

ψ(r, θ, φ) =

 Å 2
na

ã3 (n− l − 1)!
2n(n+ l) e−r/na

Å 2r
na

ãl ï
L2l+1
n−l−1

Å 2r
na

ãò
Y m
l (θ, φ)
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Where L are the associated Laguerre polynomials, and Y are spherical harmonics.

And the energies are given by
En = −13.6

n2

We have a Bohr radius:
a = 4πε0ℏ2

me2

These functions are the energy eigenfunctions:

Ĥψnlm = Enψnlm

And also eigenfunctions of angular momentum:

L̂2ψnlm = l(l + 1)ℏ2ψnlm

LZψnlm = mℏψnlm

We also have to incorporate the fact that Sz = ±1
2ℏ. We have that l = 0, 1, 2, . . . , n− 1 and we have

that m = −l,−l + 1, . . . , 0, 1, . . . , l.

We have seen that Helium has Z = 2, and that we can separate the variables into two different
wavefunctions, if we ignore the electron-electron interaction. We saw that this didn’t get us that
bad of a result, so for atoms in general:

ψ(r1, r2, r3, . . . , rZ) =
Z∏
j=1

ψnj ,lj ,mj
(rj)

We have to fiddle with these so if we swap rq and rs, we have to negate the wavefunction, since the
particles we’re dealing with are Fermions.

We have 2l + 1 different distinct values of m, and there are n values of l. For a fixed n, we have a
lot of degenerate states. And we have 2 for spin up and spin down.

For fixed n, we have 2n2 degenerate states (states with the same energy). For n = 1, we have
Hydrogen and Helium, and for n = 2, we need 8 to fill up the shell (2n2 degenerate states). This
leads us up to Neon.

If we follow this, we predict 18 atoms until the next Noble gas, but we need only 8. The reason for
this is that it is more energetically favorable to skip spots in one of the shells.

3 Solids
We will be looking at the electronic properties, and we will assume that we know the crystal
structure, and we have N electrons. We will also assume that there are d outer shell electrons, that
are weakly bound.

The outer shell electrons (Nd of them) delocalize. This means that they are free to move around.
Instead of dealing with the ionic cores, let us smear the ions out, making it a uniform sort of
“pudding” of positive charge, with the electrons moving around. This is known as the jellium model.
If we zoom in on some electron, it repulses all other electrons, and pulls the ionic cores slightly.
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This gets a small region around the electron with net positive charge. It can be shown that the
potential between any two electrons

V12 = 1
4πε0

e2

r12
exp −|r12|

λTF

Where λTF is known as the Thomas-Fermi length. We essentially have the Coloumb force with a
“screen” term tacked on. It can be shown that λTF ∝

Ä
1
ρ

ä1/3
, where ρ is the number of electrons per

unit volume, the charge density. The fact that an electron does not really feel the other electrons in
the gas is due to the fact that we have a “screened” Coulomb potential. Generally, we can start out
by neglecting the e− e interaction because it is effectively weak.

We have our jellium positive charge, with our screened electrons. We have no net charge over the
entire jellium. If we kick out an electron, that generates a missing electron where the electron was.
This missing electron generates a Coloumb force, which is the reason that electrons don’t just leave
materials, since the Colomb force is strong. This generates a 3D box potential. We have a box
of size lx, ly, and lz, and we have N ions and Nd electrons. Note that we don’t have to do a box
potential, we could instead use periodic boundary conditions or anti-periodic boundary conditions,
and they will lead to the same result.

We have that the wavefunction splits into 3 directions:

Ψ(x, y, z) = X(x)Y (y)Z(z)

And if we go through and solve this, doing 2 separation of variables on the Schrodinger equation:

Ψ(x, y, z) =
 

8
lxlylz

sin kxx sin kyy sin kzz

Where kx = nxπ
lx

, for nx = 0, 1, 2, . . . , and similarly for ky and kz. The energy is given by

E = ℏ2

2m(k2
x + k2

y + k2
z)

Let us set ourselves into the 1 dimensional case. In this case, ψ(x) =
»

2
l sin nxπx

lx
. These are

standing waves on a string. The energies are given by E = ℏ2

2m
π2

l2x
n2
x. We can fit 2 electrons into

each energy level (1 spin up and 1 spin down). Note that the reason we cannot fit more than 2 is
that we are only in 1 dimension, we only have 2 quantum numbers, nx and the spin.

What if we wnat to find the ground state energy? We have to begin with what nxmax . If we have
Nd electrons, since we can fit 2 electrons into each energy level, we have that nmax = Nd

2 . We also
sometimes call this nFermi. We now want to find the energy of the maximum energy:

EFermi = ℏ2

2m
π2

l2x

N2d2

4 = ℏ2

2m

(π
2

)2
ρ2

We can find the total ground state energy for the 1D electron gas:

E0 = 2(E1 + E2 + · · · + EF )
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Instead of doing this, we can find the density of states along the line the system forms in n space,
which is 1. We can change the sum to an integral very carefully. We have that our energy is

∑
kn = kkF

1 2ℏ
2k2
n

2m =
∫ kF

0

1
π
lx

2ℏ
2k2

2m

Where the two is for the spin factor, and the scaling term is because of the density of states along
the k space line. We can compute this:

E0 = 2 lx
π

ℏ2

2m
k3
F

3
Turns out that we can rewrite this as

E0 = 1
3NdEF

In 3D, we still have Nd free electrons. We have that the energy will be given by

E = ℏ2

2m(k2
x + k2

y + k2
z) = ℏ2

2m

ÇÅ
nxπ

lx

ã2
+
Å
nyπ

ly

ã2
+
Å
nzπ

lz

ã2å
We have our Fermi surface, a surface of constant energy that is governed by the variables nx, ny,
and nz. While we really care about integer points only, but if N is large, we don’t see the jagged
nature of the sphere, we can just say the values for the ns are continuous. Also note that we care
about only 1 octant of the sphere, otherwise we’ll overcount. We have that the total number of
electrons, Nd, is equal to

Nd = 21
8Vnf

1

Where the 2 is due to spin, the 1
8 for not overcounting, Vnf

is the volume of a sphere of radius nf ,
and the 1 is the density of states. This leads to the result:

kf =
Å

3π2Nd

V

ã1/3

Inserting this into the expression for Ef :

EF = ℏ2

2m

Å
3π2Nd

V

ã2/3

From this, we can find the total ground state energy:

E0 = 3
5NdEf

Suppose that we have a cube of length l, and we expand it by some amount V → V + ∆V . We see
that the ground state energy will change, because Ef is dependent on V . We have some ∆E0:

∆E0 = E0

Å
−2

3

ã ∆V
V

From this, we can find the fractional change:

∆E0
E0

= −2
3

∆V
V
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For a classical gas, we would say that

∆E = ∆W = F∆x = −P∆V

Where W is the work done by the system. Thus we have that

∆E
E0

= −2
3

∆V
V

= −P∆V
E0

→ P = 2
3
E0
V

This is the pressure of an electron gas. This is the effect of the Pauli Exclusion principle and the
Heisenberg Uncertainty Principle.

We can also look at the electrical conductance of a material. We can first talk about probability.
We have that the total probability is equal to 1, and is conserved over the infinite region. Suppose
we instead look at a finite region. We can define something known as the probability current, which
defines how the probability at a certain point changes over time:

Jp(x, t) = iℏ
2m

Å
Ψ(x, t)∂Ψ∗(x, t)

∂x
− Ψ∗(x, t)∂Ψ(x, t)

∂x

ã
The electrical current (in 1D), is given by Jelec = −eJp, where e is the charge of an electron. Suppose
we have a box, with hard walls, and we have periodic boundary conditions. We can create a
current via the application of a time-varying magnetic field B(t). We have that Ψ(l) = ψ(0). The
wavefunction will like a free particle, with a restriction from the boundary conditions:

Ψ(x, t) = Aeikxe−iekt/ℏ

Where Ek = ℏ2

2mk
2. If we work it all out, we find that

Je = e

m
ℏk

1
lx

This indeed has units of charge per unit time, and is a current. If we place this under a electric
field, we find that

ℏk = ℏk(t = 0) + −eEt

3.1 Effects of Periodic Potential on Electron Gas
We have a lattice of electrons, with some periodic potential, with minima at the positions of the
electrons on the lattice. We have a theorem, which states that we have translational symmetry, if
x → x+ na, where a is the lattice spacing, the physics is the same. Since we cannot measure ψ,
only ψ2:

ψ(x+ a) = eiqaψ(x)

Using the boundary condition that for a line of N atoms:

ψ(0) = ψ(Na)

Using the previous statement, we have eiNqa = 1, which tells us that Nqa = 2πm, for m ∈ Z. This
tells us that the allowed values of q are

q = 2πn
Na

This theorem is known as the Bloch theorem.
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We can attempt to model this potential using finite square wells, or delta functions. We place the
positive delta functions between each lattice point, blocking off each electron from the ones next to
it. Alternatively, we could place negative delta functions directly under every lattice point.

We have tunnelling happening between every delta barrier. We see that this quickly leads to a ton
of reflected and transmitted waves. We can think of the net wavefunction:

ψ = Aeiqx +Be−iqx

Due to the Bloch theorem, we can just solve this in one unit cell, and use the translational symmetry
to get the physics everywhere else. Suppose we have 3 bouncing waves inside our cell, generated
by 3 deflections. Let us label them 1,2, and 3. The path length of 1 and 2 is 2a. If 3 must be in
phase with 1, then 2a = nλ, for some integer n, telling us that λ = 2a

n . This is the condition for
constructive interference. In one cell, we have

ψ = Aeiqx +Be−iqx = (A+B) cos(qx) + i(A−B) sin(qx)

3.2 Delta Function Scattering
We have that ψ is assumed to be continuous, and we find a boundary condition on ∂ψ

∂x . Starting
with the Schrodinger equation:

− ℏ2

2m
d2ψ

dx2 + V (x)ψ = Eψ

We can rewrite this:
d2ψ

dx2 = 2m
ℏ2 [V (x) − E]

We can integrate both sides from some point x0 − ϵ to x0 + ϵ to get a relationship for the first
derivative ∫ x0+ϵ

x0−ϵ

d2ψ

dx2 dx = 2m
ℏ2

∫ x0+ϵ

x0−ϵ
[V (x) − E]ψ dx = 2m

ℏ2 2ϵ[V (x0) − E]ψ(x0)

Now if we have that V (x) = αδ(x− x0):Å
dψ

dx

ã
x0+ϵ

−
Å
dψ

dx

ã
x0−ϵ

= 2m
ℏ2 ψ(x0)α = ∆

Å
dψ

dx

ã
x0

Now let us use this to go back to solving our periodic potential in the gas. We can look at only one
cell, due to the previously stated Bloch theorem, which exploits the discrete translational symmetry
of the system. Looking at the cell from 0 ≤ x ≤ a, we have some boundary conditions. The first
is that ψ must be continuous. The second is the statement we just derived, at both x0 = 0 and
x0 = a. We begin with the solutions to the infinite square well:

ψ(x) = A sin(kx) +B cos(kx)

Taking the derivative, we have that

dψ

dx
= k(A cos kx−B sin kx)

This is continuous at x = 0 and x = a. To get the boundary conditions at x = 0, we can use the
Bloch theorem for the cell to the left. We then get the boundary condition (via continuity and
Bloch theorem):

ψ(x) = eiqa [A sin k(x+ a) +B cos k(x+ a)]
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Inserting x = 0, we find that
B = e−iqa [A cos ka+B sin ka]

And now using the derivative boundary condition:

Ak − eiqaAk cos ka = 2m
ℏ2 αB

Now using magic, we are left with the transcendental equation

cos(qa) = cos(ka) + mα

ℏ2k
sin ka

We let ka = z, where z is a dimensionless parameter. We then let β = mαa
ℏ2 , we are left with

cos(qa) = cos(z) + β

z
sin z

4 Iterative Solutions: Perturbation Theory
Suppose we have some Hamiltonian which is the sum of two different Hamiltonians:

Ĥ = Ĥ0 + Ĥ1

Now suppose that one of the sub-Hamiltonians is known and solvable (Ĥ0), and the other is not
solvable (Ĥ1).

We have the energy eigenfunctions of the Hamiltonian that we can solve:

Ĥ0 |ψ0
n⟩ = E0

n |ψ0
n⟩

Since the eigenfunctions are orthonormal:

⟨ψ0
n|ψ0

n⟩ = 1 ⟨ψ0
i |ψ0

j ⟩ = δi,j

And since the states are complete:

|ϕ⟩ =
∑

ci |ψ0
i ⟩ or

∑
n

|ψ0
n⟩ ⟨ψ0

n| = 1̂

for any |ϕ⟩.

Let us now write down the full Schrodinger equation:

Ĥ |ψn⟩ = En |ψn⟩

Now let us drop the kets for a while, and the hats, since this is extra notational fluff. Let us also say,
for bookkeeping purposes, that H = H0 + λH1, where 0 < λ ≤ 1. Our full Schrodinger equation is

Hψn = Enψn

We now make the following ansatz, which is to assume that we can do something analogous for the
wavefunction:

ψn = ψ0
n + λψ1

n + λ2ψ2
n + . . .
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Note that the exponents on the ψs are labels, not powers, but the exponents on the λs are powers.
More generally:

ψn =
∞∑
j=0

λjψjn

Note that if we let λ = 0, where the Hamiltonian is just the unperturbed Hamiltonian, we return to
the solution of the solvable Hamiltonian. Now for the energy:

En = E0
n + λE1

n + λ2E2
n + . . .

Now putting this all together into the Schrodinger equation:

(H0 + λH1)(ψ0
n + λψ1

n + λ2ψ2
n + . . . ) = (E0

n + λE1
n + λ2E2

n + . . . )(ψ0
n + λψ1

n + λ2ψ2
n + . . . )

If we restrict this to the second order terms:

H0ψ0
n+λ(H1ψ0

n+H0ψ1
n)+λ2(H1ψ1

n+H0ψ2
n) = E0ψ

0
n+λ(E1

nψ
0
n+E0

nψ
1
n)+λ2(E0

nψ
2
n+E1

nψ
1
1 +E2

nψ
0
n)

We now claim that the terms have to separate because they are linearly independent. We have the
λ0 terms:

H0ψ0
n = E0

nψ
0
n

The λ1 terms:
H1ψ0

n +H0ψ1 = E1
nψ

0
n + E0

nψ
1
n

And we will have the λ2 terms as well, I just don’t want to write them out. The way we pull
information out of these equations is that we use the fact that ψ0

n are orthonormal and complete.
Recall that orthonormality means that

⟨ψ0
m|ψ0

n⟩ = δmn

and completeness tells us that ∑
i

|ψ0
i ⟩ ⟨ψ0

i | = I

Suppose we take the second equation, the one from the λ terms, and we take the inner product
from the left using ⟨ψ0

n|:

⟨ψ0
n| (H1 |ψ0

n⟩ +H0 |ψ1⟩) = ⟨ψ0
n| (E1

n |ψ0
n⟩ + E0

n |ψ1
n⟩)

⟨ψ0
n|H1|ψ0

n⟩ + ⟨ψ0
n|H0|ψ1

n⟩ = ⟨ψ0
n|E1

n|ψ0
n⟩ + ⟨ψ0

n|E0
n|ψ1

n⟩

This may seem bad, but if we look at the second term on the left side, we can apply H0 to the state
to ⟨ψ0

n|, we get ⟨ψ0
n|E0

n |ψ1
n⟩:

⟨ψ0
n|H1|ψ0

n⟩ + E0
n ⟨ψ0

n|ψ1
n⟩ = E1

n ⟨ψ0
n|ψ0

n⟩ + E0
n ⟨ψ0

n|ψ1
n⟩

And we see that two terms cancel:
⟨ψ0

n|H1|ψ0
n⟩ = E1

n

We see that we have an expression for a matrix element of the perturbing Hamiltonian. This gives
that the first order correction to the energy is going to be a matrix element of our Hamiltonian, and
is true for all n.
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We could show that the first order correction to the wavefunction is given by

ψ1
n =

∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩
E0
n − E0

m

ψ0
m

Note that this does not work for states that has two states with the same energy, as the correction
to the wavefunction will diverge. This is first-order, non-degenerate perturbation theory.

4.1 Degenerate Perturbation Theory
Suppose we have two states, ψ0

a and ψ0
b , which have the same energy E0

n. We now orthogonalize
them using the Gram-Schmidt process to set it up suhc that ⟨ψ0

a|ψ0
b ⟩ = 0. Now we again plug into

the same perturbation theory equation we found, except we plug in linear combinations of ψ0
a and

ψ0
b instead:

ψ0
n = αψ0

a + βψ0
b

We find that (usually), H1 “breaks” the degeneracy. Taking the inner product from the left with ψ0
a

gets us:
α ⟨ψ0

a|H1|ψ0
a⟩ + β ⟨ψ0

a|H1|ψ0
b ⟩ = αE1

We call this first term Waa, and the second term Wab:

αWaa + βWbb = αE1

And if we instead take the inner product from the left with ψ0
b :

αWba + βWbb = βE1

We can put these two together: Å
Waa Wab

Wba Wbb

ãÅ
α
β

ã
= E1

Å
α
β

ã
This is an eigenvalue problem, and can be solved for E1, as well as α and β. We will get raising
and lowering operators:

E1
± = 1

2

[
Waa +Wbb ±

»
(Waa −Wbb) + 4|Wab|2

]
And we can compute the ratio between β and α:Ç

E1
± −Waa

Wab

å
α = β±

For higher degeneracy, we have a larger matrix, where we introduce new states labelled by c, d, etc.
This matrix is known as Ŵ . We have that det(Ŵ −E1I) = 0. If we have this, we can find all the
energies, and we can find all the coefficients if we wanted.
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4.1.1 Relativistic Corrections to the Hydrogen Atom

When we looked at the Bohr/Schrodinger model of the Hydrogen atom, and compared it against
the experimental spectra, we found that we saw “splitting”, experimental spectra had multiple lines
where the theoretical spectra had only 1.

When we write out the energy of the hydrogen atom:

Enlm = −me

2ℏ2

Å
e2

4πε0

ã2 1
n2

We can rewrite this as

En = −mec
2

2

Å
e2

4πℏε0c

ã2 1
n2

Now we note that

E1 = 13.6eV = mec
2

2

ï
e2

4πε0ℏc

ò2
Now we note that mec

2 = 511 keV, which tells us that the squared term is small. The inside of that
term is given a name, the fine-structure constant:

α = e2

4πε0ℏc
= 1

137.036 . . .

We will see that the spectral splitting depends on this constant. We can get rid of the c via the
relationship

c =
 

1
ε0µ0

Giving that

α = e2

4πℏ

…
µ0
ε0

We note that this square root term is the impedance of free space, Z0 = 376.73Ω. From this, we
know that 4πℏ

e2 = 51625.6Ω, which is sometimes known as the quantum resistance.

If we look at the Bohr model and compute the current of the electron:

I = e

T
∼= ωe = (ℏω) e

ℏ
= E1

e

ℏ

We can compute the voltage, which is energy per unit charge:

V = E1
e

Now using Ohm’s law:
V

I
= ℏ
e2

We’ve dropped a factor of π in the frequency, but we see that we have the same ratio that we had
in α.

We have that E1
mec2 ∝ α2, and we have corrections to this. We have that the electron has kinetic

energy, which gives small relativistic corrections, of order α2. We then have the interaction between
the spin and the orbit give a correction of order α2. Together, these account for the “fine structure”.
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We have spent our time in quantum mechanics by saying that the kinetic energy is given by

T = p2

2m p = h

i
∇

We have the T̂ operator:

T̂ = − ℏ2

2m∇2

This is the classical limit. We need something different to account for relativity. From relativity, we
have that

E = mc2»
1 −

(
v
2
)2

The rest energy (v = 0), is given by mc2. Thus the kinetic energy will be the total energy minus
the rest energy:

Trel = mc2»
1 −

(
v
2
)2

−mc2

Note that if v is small, we can do a Taylor series expansion and we will find the classical limit,
1
2mv

2.

Now we need to express this in terms of p, but p is not mv in relativity:

p = mv»
1 −

(
v
c

)2

In special relativity, where V = 0, we have that

E2 = p2c2 +m2c4

To get the relativistic kinetic energy, we have to find

T = E(p) − E(p = 0) =
√
p2c2 +m2c4 −mc2

Now we note that p2c2 is small if v ≪ c. We can rewrite the kinetic energy:

T = mc2

 
1 + p2

m2c2 −mc2

Now we can do a Taylor series expansion:

T = mc2
ï
1 +

( p

mc

)2 1
2 − 1

8
p4

m4c4 + . . .

ò
−mc2

We see that we are left with

T = p2

2m −

Ä
p2

2m

ä2

2mc2

Thus we have that

Ĥ = p̂2

2m + V −

Ä
p̂2

2m

ä2

2mc2

We call the first two terms H, and the last term H ′.
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Now we can compute the first order corrections to the energy:

E1
n = ⟨ψ0

n|H ′|ψ0
n⟩ =

Æ
ψ0
n

∣∣∣∣∣
Å
p2

2m

ã2 ∣∣∣∣∣ψ0
n

∏Å
− 1

2mc2

ã
=
≠
p2

2mψ0
n

∣∣∣∣ p2

2mψ0
n

∑Å
− 1

2mc2

ã
Computing the value of p2

2mψ
0
n for the infinite square well:

p2

2mψ0
n = − ℏ2

2m
d2

dx

ñ…
2
a

sin nπx
a

ô
And we can do this out and we find that we have

E1
n =
Å

− 1
2mc2

ã
(E0

n)2

Looking at the unperturbed state, we have that

p2

2m = (E0
n − V )

This turns the relativistic correction that we just computed into:

E1
n =

〈
(E0

n − V )ψ0
n

∣∣ (E0
n − V )ψ0

n

〉Å
− 1

2mc2

ã
=

〈
ψ0
n

∣∣ (E0
n − V )2 ∣∣ψ0

n

〉Å −1
2mc2

ã
=

〈
ψ0
n

∣∣ (E0
n)2 − 2E0

nV + V 2 ∣∣ψ0
n

〉Å
− 1

2mc2

ã
=

[
(E0

n)2 − 2E0
〈
ψ0
n

∣∣V ∣∣ψ0
n

〉
+
〈
ψ0
n

∣∣V 2 ∣∣ψ0
n

〉]Å
− 1

2mc2

ã
Now we can recall that V = −c2

4πε0r
, and we have two awful inner products, with the V , which boil

down to
〈1
r

〉
and

〈 1
r2

〉
: ≠1

r

∑
= 1
n2a

a = 4πε0ℏ2

me2≠ 1
r2

∑
= 1(

l + 1
2
)
n3a2

We can write out the correction as

E1
n

|E0
n|

= −α2

4

ñ
4

n(l + 1
2)

− 3
n2

ô
Unfortunately, this does not agree with experiment. The reason is that this is incomplete, there is
another term of order α2 that needs to be included. This term is the spin-orbit coupling. The idea
is that we have a proton with an electron orbiting around it. If we momentarily go into the frame
of the electron, we have the proton orbiting around the electron. Since we have a moving charge,
we produce a magnetic field. The electron has a magnetic moment with interacts with the magnetic
field, −µ · B. The spin creates the µ and the orbit generates the magnetic field B.
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Note that we have a warning alarm blaring here, we’ve switched to a non-inertial reference frame.
Newton’s laws state that

∑
F = ma. We can split a into the centripetal acceleration and another

term, where the centripetal acceleration is

ac = −v2

r
r = −rω2r̂

This gives us that ∑
F = m(ac + ã) = −mrω2r̂ +mã

We can rewrite this: ∑
F +mω2rr̂ = mã

This term on the left side that we’ve added is the inertial force, the centripetal force. Thus to work
in the rotating frame, we need an extra term to account for it. We can get the potential for this
force by just integrating it. For now though, we just ignore it (going along with the book).

The book just looks at
H = −µ · B = −(µxBx + µyBy + µzBz)

So now we need to find what B is. We use the dreaded Biot-Savart Law:

dB = µ0
4π

I dl × r̂

|r|2

We also have:
Me = − e

m
S

Where S is the spin angular moment. If we put this all together with the Hamiltonian:

H = −µ× B = e2

4πε0

1
2

1
m2c2r3 S · L

Where we have added a factor of 1
2 because we are working in the rotating reference frame. Since

we have the spin operator and the angular momentum operator, this is known as the spin-orbit
interaction.

It turns out that there is an operator Ĵ , which is the total angular momentum operator:

Ĵ = L̂+ Ŝ

We use this because Ŝ and L̂ don’t commute with the Hamiltonian. We use Ĵ2 = (Ŝ + L̂)2 =
L̂2 + Ŝ2 + 2L̂Ŝ. This turns the Hamiltonian into

H = e2

8πε0

1
m2c2r3

1
2[Ĵ2 − L̂2 − Ŝ2]

4.2 Summary of Perturbation Theory
Let’s do a summary. We have non-degenerate perturbation theory:

H = H0 +H1

En = E0
n + E1

n + E2
n + . . .
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Where the exponents are indices. We find that the first order corrections to the energy are:

E1
n = ⟨ψ0

n|H1|ψ0
n⟩

And the second order corrections are given by

E2
n =

∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩
E0
n − E0

m

Note that if we had H0 in there instead, we would have 0 as the second order corrections. We then
have the first order correction to the wavefunction:

|ψ1
n⟩ =

∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩
E0
n − E0

m

|ψ0
m⟩

Note that these formulas come from orthonormality and completeness, we are expanding out the
corrections in the original wavefunction basis.

For degenerate perturbation theory, we note that we haev an issue when Em = En, we have states
that are degenerate in energy. We state that there are orthogonal states:

ψ0 = αψ0
a + βψ0

b + γψ0
c + . . .

These states are states of the unperturbed Hamiltonian, with the same energy, E0. We then get

W

â
α
β
γ
δ
...

ì
= E1

â
α
β
γ
δ
...

ì
Where Wab = ⟨ψ0

a|H1|ψ0
b ⟩. If we then set det(W − E1I) = 0, we can solve for the energies.

5 The Variational Principle
The variational principle starts with a trial wavefunction. We then compute the corresponding
energy, and then we shift the “width” of the trial wavefunction to find the minimum energy, which
will be ≥ Eground.

We have some H, which is unsolved. However, it will have states |ψn⟩ with En, but we have no clue
what they are. By orthonormality and completeness, we can expand any state using those:

|ψ⟩ =
∑
n

cn |ψn⟩

Where H |ψn⟩ = En |ψn⟩, as expected from QM. Let us take an arbitrary state, and compute the
magnitude:

⟨ψ|ψ⟩ =
∑
n′

c∗
n′ ⟨ψn′ |

∑
n

cn |n⟩ =
∑
n,n′

c∗
n′cn ⟨n′|n⟩ =

∑
n

|c2
n| = 1
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Let us compute the expectation value of H for a state |ψ⟩:

⟨ψ|H|ψ⟩ =
∑
n

c∗
n ⟨ψn|H

∑
m

cm |ψm⟩ =
∑

|cn|2En

The ground state is the state with the lowest energy:

E0 ≤ E1, E2, E3, . . .

Thus we know that
⟨ψ|H|ψ⟩ =

∑
n

|cn|2En ≥
∑
n

|cn|2E0 = E0

This tells us that for any Hamiltonian, and for any state ⟨ψ|H|ψ⟩ ≥ E0.

Suppose we have an infinite square well, centered at the origin, ranging from −a
2 to a

2 . We submit
that anything that is smooth and is 0 at the edges, and has a little bit of squiggle is a good enough
guess to start. We want to find some inverted quadratic, which is something like

ψguess = c
(
x− a

2

)(
x+ a

2

)
We then need to normalize this, which will determine c:

|ψguess|2 = |c|2
Å
x2 − a2

4

ã2
= |c|2

Å
x4 − 2x2a

2

4 + a4

16

ã
Now normalizing: ∫ a

2

− a
2

|ψguess|2 dx = 1 → |c|2a5

30 = 1

This tells us that c =
( 30
a5

) 1
2 . We now want to compute ⟨ψ|H|ψ⟩:

⟨ψ|H|ψ⟩ = ⟨ψ|
ï
− ℏ2

2m
d2

dx2

Å
cx2 − c

(a
2

)2ãò
= ⟨ψ|− ℏ2

2m2c = ⟨ψ|
ï
−2ℏ2c

2m

ò
=

∫ a
2

− a
2

c∗x2−x∗a
2

4

Å
− ℏ2

2mc

ã
dx

We find that
⟨ψ|H|ψ⟩ = 1

3 |c|2ℏ
2a3

2m = 10ℏ2

2ma2

We know that the energy of the ground state is actually ℏ2

2m
π2

a2 . This is about a 6% difference
between the actual ground state and the guess wavefunction. Note that in most cases where we use
this method, we won’t know the actual ground state energy.

This method is called the variational principle, but we didn’t vary anything! Let us do an example
where we do so. Take the harmonic oscillator potential, which is difficult to solve. Suppose we try
the same wavefunction as in the previous example, noting that there is no clear choice of a. This
time, we do the analogous calculation to find ⟨ψ|H|ψ⟩, and then we vary a to minimize this value.

We still have that ∫ a
2

− a
2

ψ∗ψ dx = 1

Which still obtains |c|2a5 = 30. We can then set up the integral for ⟨ψ|H|ψ⟩:∫ a
2

− a
2

ψ∗
Å

− ℏ2

2m
d2

dx2 + 1
2mω

2x2
ã
ψ dx
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We can first compute the action of the Hamiltonian on ψ:

Hψ =
Å

−ℏ2

m
+ 1

2mω
2x4 − 1

8mω
2a2x2

ã
c

And then tacking on ψ∗ to this:

ψ∗Hψ = |c|2
ï1

2mω
2x6 − 1

4mω
2a2x4 +

Å 1
32mω

2a4 − ℏ2

m

ã
x2 + ℏ2

4ma2
ò

We then have to integrate this from −a
2 to a

2 :

⟨H⟩ = 60
ï
a2mω2 1

3360 + ℏ2

m

1
a2

1
12

ò
If we take the derivative with respect to a, and setting it equal to 0 will give us the minima and
maxima of this expression. We can then take the “best” value of a and find ⟨H⟩min. We will find
that amin = 3360

12

»
ℏ2

mω , and ⟨H⟩min =
»

5
14ℏω = 0.598ℏω. This is off by about 20%.

5.1 Ground State of Helium with Variational Principle
We want to use the variational principle to find the ground state of helium. The Hamiltonian is
given by

Ĥ = − ℏ2

2m∇2
1 − ℏ2

2m∇2
2 − e2

4πε0

Å 2
|r1|

+ 2
|r2

− 1
|r1 − r2|

ã
Where we have the kinetic energy of both particles, and then the potential energies of the electrons
and the proton, and then the potential between the two.

If we ignore the electron-electron interaction, then we have that

ψ0(r1, r2) = ψ100(r1)ψ100(r2)

For hydrogen, we have that

ψ100 =
…

1
πa3 e

−r/a E = − m

2ℏ2

Å
e2

4πε0

ã2

Where we have that n = 1, so that gets rid of the 1
n2 , and a = 4πε0ℏ2

me2 . We have to modify this for
Helium, because e2 → 2e2. If we write the Hydrogen wavefunction out but change the e2 to 2e2:

ψ100(r1) =

 
23

πa3 e
−2r1/a

and similarly for ψ100(r2). Putting the two functions back together:

ψ100(r1r2) = 8
πa3 e

−2(r1+r2)/a

We want to use this as our trial wavefunction. We can then compute the inner product ⟨ψ100|H|ψ100⟩:

E0 ≤ ⟨100|T + V (e1, p) + V (e2, p)|100⟩ + ⟨100|V (e, e)|100⟩
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≤ −8EHion + e2

4πε0

Å 8
πa3

ã2 ∫
r1

∫
r2
e−4(r1+r2)/a 1

|r1 − r2|
d3r1d

3r2

To do this, we first fix r1, and we can then write |r1 − r2| =
√
r2

1 + r2
2 − 2r1r2 cos θ2, using the law

of cosines. We can then change the r2 integral to spherical:

⟨Vee⟩ = e2

4πε0

Å 8
πa3

ã2 ∫
r1

ñ∫ 2π

0

∫ π

0

∫ ∞

0

e−4r2/ar2
2 sin θ2 dr2dθ2dϕ2√

r2
1 + r2

2 − 2r1r2 cos θ2

ô
e−4r1/a d3r1

We see that the ϕ2 integral is easy, it only shows up once:

= 2π
∫ ∞

0
e−4r2/ar2

2

∫ π

0

sin θ2dθ2√
r2

1 + r − 22 − 2r1r2 cos θ2
dr2

Through magic, we find that

⟨Vee⟩ =
Å

e2

4πε0a

ã 5
4 =
Å

e2

4πε0

ã2 5m
4ℏ2

We find that EHe0 ≤ −74.8 eV, and experiment shows that the energy is −78.975 eV.

We now account for the fact that one electron partially screens the nucleus from the other electron.
Instead of saying e2 → 2e2, we instead say e · e → Zeffe · e, where we expect that Zeff < 2. This is
the parameter that we want to vary.

We find that the Zeff that gives the minimum in the energy is 27
16 , and the ground state energy is

≤ −77.5eV, which is closer to the experimental value.

6 WKB/KWB/BWK/JWKB/LG Method
The main idea of this approximation is that if V is constant, and E > V , ψ will be plane waves,
Aeikx, where k =

»
2m(E−V )

ℏ2 . If V varies slowly, maybe we can get away with

ψ = A(x)eik(x)x

What we want is for the wavelength to vary slowly, so everything is fine unless E−V is approaching
0. Therefore, we have issues near the classical turning points of the potential.

We define k(x) =
»

2m
ℏ2 (E − V (x)), for E > V (x). We then define the momentum, p(x) = ℏk(x) =√

2m(E − V (x)). Our Schrodinger equation then becomes

d2ψ(x)
dx2 = −(p(x))2

ℏ2 ψ(x)

All we have done is rewrite this using our definitions, just to remove constants that we have to carry
around. Now let us look for a solution of the form A(x)eiϕ(x). This is a general form of a complex
function, it has a phase and an amplitude.

We have that the first derivative of our function is

dψ

dx
= dA(x)

dx
eiϕ(x) + iA(x)dϕ

dx
eiϕ(x)
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Now we take the derivative of this, and insert it into the Schrodinger equation:

d2ψ

dx2 =
ñ
d2A

dx2 + 2idA
dx

dϕ

dx
−A

Å
dϕ

dx

ã2
+ iA

d2ϕ

dx2

ô
eiϕ(x) = −p2(x)

ℏ2 A(x)eiϕ(x)

This is actually 2 equations, since we have the left side being complex and the right side being real.
Thus we can write out two equations:

d2A

dx2 = A

ñÅ
dϕ

dx

ã2
− p2(x)

ℏ2

ô
i

ï
2dA
dx

dϕ

dx
+A

d2ϕ

dx2

ò
= 0

We can rewrite the second equation, (take derivative and divide by A):

d2A

dx2 = A

ñÅ
dϕ

dx

ã2
− p2(x)

ℏ2

ô
d

dx

ï
A2dϕ

dx

ò
= 0

If we now integrate the second equation, we have that A2 dϕ
dx = D2, giving us

A = D»
dϕ
dx

Now we have that A(x) and ϕ(x) are related by some constant D. Looking at the first equation,
(after some rewriting)

1
A

d2A

d2 =
Å
dϕ

dx

ã2
− p2

ℏ2

Now we claim that if V (x) varies slowly, the term on the left is close to 0, and thus we can drop the
term. We can check this later, after finding our solution.

We find that
ψ± = C±√

p(x)
e±i

∫ x
p(x′) dx

For regions where E > V (oscillatory behavior). For regions where E < V :

ψ = D±√
|p(x)|

e± 1
ℏ

∫ x |p(x′)| dx

We see that we have exponential decay. Now we need to find the solution in the “danger” regions,
so we can match the wavefunctions and their derivatives at the edges of the regions to get a full
solution. Suppose we zoom in on the section of the potential close to the danger point. If we zoom
in close enough to the turning point, the potential is linear in x. If we move the origin to the
turning point, we have that the potential at some x close to 0 is V (x) = V (0) + V ′(0)x, where
V ′(0) = dV (x)

dx |0. We can insert this into the Schrodinger equation:

− ℏ2

2m
d2ψ

dx2 +
(
E + V ′(0)x

)
ψ = Eψ
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Which gets us
d2ψ

dx2 = 2m
ℏ2 V

′(0)xψ

We note that 2m
ℏ2 V

′(0) has units of length−3. We define a quantity α:

α =
ï2m
ℏ2 V

′(0)
ò1/3

This turns our equation into
d2ψ

dx2 = α3xψ

Which we can change of variables into

d2ψ

d(αx)2 = αxψ

If we let z = αx, we have the equation
d2ψ

dz2 = zψ

This was solved by the astronomer Airy, and are known as Airy functions, which have special
properties.

ψ(z) = aAi(z) + bBi(z)

We can look at the asymptotic forms of Ai on both ends, where we see that from the left, we have

1
(−z)1/4 sin

Å2
3(−z)3/2 + π

4

ã
and from the right, we have

1
z1/4 e

− 2
3 z

3/2

For Bi, instead of a sin, we have a cos, and instead of a decaying exponential we have exponential
growth.

They also have the property that

⟨Ai(z)|Ai(z′)⟩ = δ(z − z′) ⟨Ai(z)|Bi(z′)⟩ = 0

We can then use wavefunction matching, and we can write down the wavefunctions:

ψ(x) = 2D√
p(x)

sin
Å1
ℏ

∫ x2

x
p(x′) dx′ + π

4

ã
x < x2

ψ(x) = D√
p(x)

exp
Å

−1
ℏ

∫ x

x2
|p(x′)| dx′

ã
x > x2

Where we have defined the wavefunctions for the right turning point. We can do the same thing for
the right turning point, at x1:

ψ(x) = 2D√
p(x)

sin
Å1
ℏ

∫ x

x1
p(x′) dx′ + π

4

ã
x > x1
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We now note that the inner well wavefunctions must be equal to each other:

ψ(x) = 2D′√
p(x)

sin
Å1
ℏ

∫ x

x1
p(x′) dx′ + π

4

ã
x > x1

ψ(x) = 2D√
p(x)

sin
Å1
ℏ

∫ x2

x
p(x′) dx′ + π

4

ã
x < x2

Because sin is odd, we can flip the sign in the first case:

ψ(x) = 2D′√
p(x)

sin
Å

−1
ℏ

∫ x

x1
p(x′) dx′ − π

4

ã
x > x1

We now have that the arguments to the sines are the same, up to a mod of nπ:

1
ℏ

∫ x2

x
p(x′) dx′ + π

4 = −1
ℏ

∫ x

x1
p(x′) dx′ − π

4 + nπ

Now noting that bringing one integral to the other side gives an integral over the entire classical
region:

1
ℏ

∫ x2

x1
p(x′) dx′ + π

2 = nπ

∫ x2

x1
p(x′) dx′ =

Å
n− 1

2

ã
πℏ

Now we recall that p = ±
√

2m(E − V ), and we note that we have an implicit equation for the
energy eigenvalues. This is the Bohr-Sommerfeld Quantization condition. If we insert the harmonic
oscillator potential, V = 1

2mω
2x2, we get the right answer.

7 Dynamics
Long ago, all quantum mechanics textbooks stated that we can separate the wavefunction into a
time dependent part and a position dependent part:

Ψ(r, t) = ψ(r)e−iEt/ℏ

And a general Ψ(r, t) is given by

Ψ(r, t) =
∑
n

cnψn(r)e−Ent/ℏ

Via orthonormality and completeness.

Suppose we have a Hydrogen atom sitting in the n = 3 state in some potential. Our theory states
that it will remain like this forever, since the n = 3 state is an eigenstate (ψ∗ψ is time-independent).
However, we don’t see this in reality, so what’s missing?

We are missing the fact that real atoms decay. Suppose Ĥ = − ℏ2

2m∇2 − 1
4πε0

e2

|r| + ẑE0 cos(ωt), where
we have the Hydrogen atom, as well as some laser being shone at the atom, polarized in the ẑ
direction. Now we have a time-dependent potential, so how do we deal with this?

Dynamics is when the state is changing in the Hilbert space, instead of the usual Pa = |ca|2, we have
that Pa is some function of t. To make this change, we move from a time-independent potential to
a time-dependent potential.
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Suppose we have a two-state system, such as spin, or a qubit, or anything that acts like a two state
system.

We choose a Hamiltonian H = H0 +H ′(t), where H0 is static, and we note that H ′ does not need
to be small. We have ψa and ψb, which form a basis for H0:

H0ψa = Eaψa H0ψb = ESbψb

Now we can go back to the full time dependent equation, and find the states:

(H0 +H ′)Ψ(t) = iℏ
∂

∂t
Ψ(t)

We will look for solutions of the form Ψ(t) = ca(t)e−iEat/ℏψa + cb(t)e−iEbt/ℏψb. Inserting this into
the Hamiltonian and then expanding out and cancelling terms:

H ′
î
ca(t)ψae−iEat/ℏ + cb(t)ψbe−iEbt/ℏ

ó
= iℏ

î
ċaψAe

−iEat/ℏ + ċbψbe
−iEbt/ℏ

ó
This is the basic equation for time-dependent perturbation theory. We then do the usual trick,
replace the basis states with kets, and then operate on both sides with a ⟨ψa|, we will have matrix
elements as well as cancellation of some terms:

ca(t)e−iEat/ℏ ⟨ψa|H ′|ψa⟩ + cb(t)e−iEbt/ℏ ⟨ψa|H ′|ψb⟩ = iℏċae−iEat/ℏ

cae
−iEat/ℏH ′

aa + cbe
−iEbt/ℏH ′

ab = iℏċae−iEat/ℏ

Now suppose we had taken the inner product with ⟨ψb| instead, and we would find a similar equation,
just with interchange of as and bs:

cbe
−iEbt/ℏH ′

bb + cae
−iEat/ℏH ′

ba = iℏċbe−iEbt/ℏ

Note that these two equations are exact, we haven’t made any approximations. We can now solve
these equations for the coefficient derivatives:

ċa(t) = − i

ℏ
H ′
ab(t)e−iω0tcb(t)

ċb(t) = − i

ℏ
H ′
ba(t)eiω0tca(t)

Where ω0 = Eb−Ea

ℏ . To solve these, we can use initial conditions, such as that it starts in state a,
which tells us that ca(0) = 1 and cb(0) = 0. We then claim that the 0th iteration solution is that
c0
a(t) = 1 and c0

b(t) = 0, and then plug these into the equations to get the first iteration solutions:

ċ1
a = − i

ℏ
H ′
abe

−iω0tc0
b → c1

a = 1

ċ1
b = − i

ℏ
H ′
bae

iω0tc0
a → c1

b = −i
ℏ

∫ t

0
H ′
ba(t′)eiω0t′ dt′

Note that we have to renormalize the solutions that we find. The general scheme, using iteration
indices:

ċn+1
a = − i

ℏ
Hab(t)e−iω0tcnb (t)
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ċn+1
b (t) = − i

ℏ
H ′
ba(t)eiω0tcna(t)

This is the heart of time-dependent perturbation theory. We can write out the expression for cb:

cb(t) = − i

ℏ

∫ t

0
ei(Eb−Ea)t′/ℏH ′

ba(t′) dt′

If we do this out, we have

e−iEbt/ℏcb(t) = − i

ℏ

∫ t

0

ï∫
(e−iEb(t−t′)/ℏψ∗

b (q))H ′(t′)(e−iEat′/ℏψa(q)) dq
ò
dt′

We see that we accumulate the influence of the perturbation in the past in the matrix element.

Suppose that we have a time dependent Hamiltonian, with H ′ = Vba cos(ωt). This turns the integral
into

c
(1)
b (t) = − i

ℏ

∫ t

0
Vba cos(ωt′)eiω0t′ dt′

This is solvable, by converting the cos to exponentials:

cos(ωt′) = eiωt
′ + e−iωt′

2
This turns the integral into

c
(1)
b (t) = − iVba

2ℏ

∫ t

0
eiωt

′+iω0t′ + e−iωt′+iω0t′ dt = − iVba

2ℏ

ï∫ t

0
eit

′(ω+ω0) dt+
∫ t

0
eit

′(ω0−ω) dt

ò
= −Vba

2ℏ

ñ
ei(ω+ω0)t′

ω0 + ω
+ ei(ω0−ω)t′

ω0 − ω

ôt
0

= −Vba
2ℏ

ñ
ei(ω0+ω)t′ − 1

ω0 + ω
+ ei(ω0−ω)t′ − 1

ω0 − ω

ô
If we have that ω is close to ω0, then the first term will have a denominator of 2ω0, while ω0 − ω
will be small. Thus we can make an approximation, which is to drop the first term.

We can then rewrite the term that we have remaining (using the nice trick of factoring out a eiωt/2,
which will make the inside a factor of the sin), and then get the magnitude to find the probability:

P
(1)
b (t) = |c(1)

b (t)|2 = |Vba|2

ℏ2

Ç
sin

(
ω0−ω

2 t
)

ω0 − ω

å
This is the probability that, starting in the ground state a, the you are in the upper state b. The
oscillations in the probability are known as Rabi oscillations.

Let us go back a few steps, and write down the exact formulas:

ċ1
a = − i

ℏ
H ′
abe

−iω0tc0
b

ċ1
b = − i

ℏ
H ′
bae

iω0tc0
a

If we now insert that H ′
ab = Vba cosωt, and H ′

ba = Vba cosωt, we have exact equations.

ċa = − iVab
ℏ

Ç
eiωt + e−iωt

2

å
e−iω0tcb
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ċb = − iVba
ℏ

Ç
eiωt + e−iωt

2

å
eiω0tca

We then make what is known as the rotating wave approximation, we drop the ω + ω0 terms:

ċa = − iVab
ℏ
ei(ω−ω0)tcb

ċb = − iVba
ℏ
ei(ω0−ω)tca

These are solvable! We take a time derivative of the second equation:

c̈b = − i

ℏ
Vba
2
Ä
i(ω0 − ω)ei(ω0−ω)tca + ei(ω0−ω)tċa

ä
We can then eliminate the a terms via substitution, which will get us terms only involving b:

c̈b − i(ω0 − ω)ċb + |Vab|2

4ℏ2 cb = 0

Which is solved by
cb = Aeλt

We can then solve this, and we find that

λ± =
[
i
(ω − ω0

2

)
± 1

2

 
−(ω − ω0)2 − |Vab|2

ℏ2

]

We note that this is imaginary, and thus we will have oscillating solutions, not decaying or growing
solutions (we can factor out an i from the whole thing). We can put together the whole solution,
which is a linear combination of the two solutions:

cb = Aeλ+t +Beλ−t = ei(ω−ω2)t/2 [Aeiωrt +Be−iωrt
]

If we now reintroduce the initial condition that ca(0) = 1 and cb(0) = 0 (we start in the a state), we
find that

cb(t) = ei(ω−ω0)t/2 [i(A−B) sinω0t] = Dei(ω−ω0)t/2 sin(ωrt)

Where D = i(A−B). It can be shown that D = − Vba
2ℏωr

, from the initial conditions. We can compute
the magnitudes, and we can find that

Pa→b = |Vba|2

ℏ2
î
(ω − ω0)2 + |Vba|2

ℏ2

ó sin2 ωrt

Suppose we had an E = E0 cosωt in the ẑ direction. If the particle has charge, then the force would
be F = qE0 cosωt ẑ. The potential energy EPot = −

∫
F · dz = −qzE0 cosωt, which is the V that

we call the potential. We can then compute the matrix element H ′
ab:

H ′
ab =

∫
eiω0tψ∗

a(q)H ′(q, t)e−iω0tψb(q) dq = H ′
ab(t)
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Where q is the generalized coordinate. From here, we can sub that in, by separating the spatial and
time components, H ′

ab = V ′
ab cosωt:

ċa = − i

ℏ
(V ′
ab cosωt)e−iω0tcb

ċb = − i

ℏ
(V ′
ba cosωt)e+iω0tca

We now make the assumption that ω − ω0 ≪ ω + ω0, known as the rotating wave approximation:

c̈b − i(ω0 − ω)ċb + |V ′
ab|2

4ℏ cb = 0

Let us do a summary so far. We have some H such that H = H0(q) + H ′(q, t), where q is some
generalized coordinate. We have a two-level system, so we have two eigenstates, ψa and ψb, such
that

H0ψa/b = Ea/bψa/b

We also have that ψa and ψb are complete and orthonormal. This means that we can construct a
general solution:

Ψ(q, t) = ca(t)e−iEat/ℏψa(q) + cb(t)e−iEbt/ℏψb(q)

From this, we can rewrite the Schrodinger equation as a pair of equations:

ċa(t) = − i

ℏ
H ′
abe

−iω0tcb

ċb(t) = − i

ℏ
H ′
bae

iω0tca

Where ω0 = Eb−Ea

ℏ , and we have that ⟨a|H ′|a⟩ = 0 and ⟨b|H ′|b⟩ = 0. If this is true, this is exact,
otherwise we have extra terms.

Suppose we have a first order, small interaction. In this case, we have that

Pa→b = |Vab|2

ℏ2
sin2(

[
t
2ω0 − ω)

]
(ω0 − ω)2

Suppose that a and b are levels in an atom, and we have that E = E0ẑ cos(ωt). Note that we are
assuming that λ ≫ the atom size. We can then find the Hamiltonian:

H ′ = −
∫
qE · dẑ = −qE0z cos(ωt)

We can then compute V ′
ab:

V ′
ab =

∫∫∫
ψ∗
a(−qE0z)ψb d3r = −E0

∫∫∫
ψ∗
a(qZ)ψbd3r

This is known as the polarization, and is denoted using P. If we then compute the probability, we
will have

Pa→b =
Å |P|E0

ℏ

ã2 sin2 [(ω0 − ω) t2
]

(ω0 − ω)2
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This is known as stimulated absorption, a wave packet comes in, excites the state up a state, and
then a wave packet leaves with less energy. Since the probabilities are squared, this means that the
opposite is the same, which is known as stimulated emission. A lower energy wavepacket comes in,
drops the state from high energy to low energy, and then a wavepacket leaves with higher energy. We
note that if we have more particles in the upper state than in the lower state, we see that absorption
does nothing, but emission generates 2 photons. This means that we can use it to amplify the input.
This is the basis for masers and lasers.

Suppose instead we have an incoherent driving signal, such as different frequencies, different
polarizations, and different directions. To do this, we use approximations that average over ω and
space.

Let’s do some E and M. If we have a travelling electric field:

E = ẑE0 cos(kx− ωt)

We can compute the B field:
B = B0x̂ cos(kx− ωt)

Where B0 = E0
c . The energy per unit volume in an E field, is 1

2ε0E
2
0 cos2(kx− ωt). We can do the

same thing for the B field, 1
2µ0B

2
0 cos2(kx− ωt).

The average energy per unit volume in an EM field with fixed frequency is given by

u = ε0E
2
0

2
We can then rewrite the transition probability in terms of the energy density:

Pa→b = 2u(ω)
ε0ℏ2 |P|2

sin2 [(ω0 − ω) t2
]

(ω0 − ω)2

We deal with a range of frequencies, known as the spectral density:

du(ω) = ρ(ω)dω

And then the total density is ∫
du =

∫ ∞

0
ρ(ω)dω

Using this when computing the transition probability:

Pb→a = 2|P|2

ε0ℏ2

∫ ∞

0
ρ(ω)

sin2 [(ω0 − ω) t2
]

(ω0 − ω)2 dω

After solving this integral, we have that

Pb→a = |P|2t
ε0ℏ2

∫ −∞

0
ρ(x)sin2 x

x2 dx

This interior function is peaked around x = 0, and since we have made the substitution x = (ω0−ω) t2 ,
we can rewrite this as

Pb→a ≈ −|P|2t
ε0ℏ2 ρ(ω0)

∫ ∞

−∞

sin2 x

x2 dx = |P|2tπ
ε0ℏ2 ρ(ω0)
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Suppose you have a bunch of atoms, and we start at t = 0, with Pa = 3
4 and Pb = 1

4 . We note that
based on the fact that the probabilities of transition both ways are the same, then we shouldn’t
have any changes in the probability! What are we missing?

Suppose we have a hollow box with metal walls. If we have this setup, the electric field at the walls
must be E = 0. If we use Maxwell’s equations, we find that

|E| = En

[
sin mxπx

l
sin myπy

l
sin mzπz

l

]
cosωt

Each mode n is a harmonic oscillator, and we have that

Enm =
Å
nm + 1

2

ã
ℏωn

We find that even at T = 0, ρ(ω) ̸= 0, and the rate of emission is given by

Rb→a = ω0
3πε0ℏc3 |P|2

Essentially, we thought that the Schrodinger equation would tell us that our probabilities would
not change, but our system is coupled to a bunch of harmonic oscillators (in the ground state) of
varying frequencies. Since the oscillators are in the ground state, there is no stimulated absorption,
but we have stimulated emission, as we expect.

8 Summary
We begin with talking about Hilbert spaces. We can write a state as a ket:

|S(t)⟩

This is the quantum state of the system, and carries all the information about the system that we
can know. We need to know about time evolution and prediction/measurement. Time evolution is
given by the Ĥ operator:

Ĥ |S(t)⟩ = iℏ
∂

∂t
|S(t)⟩

We have that for any observable O, there is an operator Ô that has eigenstates and eigenvalues
such that O |On⟩ = λn |On⟩. We also know that αn are the only possible results of a measurement.
If we normalize the vectors, ⟨On|Om⟩ = δnm, then we can write any |S(t)⟩ as a linear combination:

|S(t)⟩ =
∑

λn |On⟩

And the probability of measuring |On⟩ is Pn = |λn|2. Orthonormality and completeness are at the
heart of everything we see in this class. We can talk more about bras and kets, and define an inner
product, ⟨f |g⟩ =

∫
f∗g dx. If we have that ⟨α|α⟩ = 1, which means that this is normalized. We also

have a projection operator, P̂α = |α⟩ ⟨α|. We also have that the identity operator is

1̂ =
∑
n

|n⟩ ⟨n|

We can do the same thing for continuous variables:

1̂ =
∫

|n⟩ ⟨n| dn
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These come in handy when we need to change bases, and we can insert in the identity to rewrite
things.

We then dealt with addition of angular momentum, and dealing with multiple particles. The states
|S,m⟩ are defined by the total spin, S, and m is spin along a certain axis. These states have the
following properties:

Ŝ2 |S,m⟩ = ℏ2S(S + 1) |S,m⟩

Ŝz |S,m⟩ = mℏ |S,m⟩

where m varies from −S to S in steps of 1. The challenge is finding a way to create total angular
momentum operators (that can cover both spin and orbital angular momentum). We can, using the
raising and lowering operators:

S± |S,m⟩ = ℏ
»
S(S + 1) −m(m± 1) |S,m± 1⟩

If we do this for two electrons, we see that there are 4 states that are orthonormal and obey these
rules, the triplet states and the singlet state. We represent the states via |Stotal,mtotal⟩:

|1, 1⟩ = |↑⟩ ⊗ |↑⟩

|1, 0⟩ = 1√
2

(|↑⟩ ⊗ |↓⟩ + |↓⟩ ⊗ |↑⟩)

|1,−1⟩ = |↓⟩ ⊗ |↓⟩

|0, 0⟩ = 1√
2

(|↑⟩ ⊗ |↓⟩ − |↓⟩ ⊗ |↑⟩)

We then move from this to multiple particles. We want to generalize the idea of the classical
Hamiltonian to multiple particles

H = |p1|2

2m1
+ |p2|2

2m2
+ V (r1, r2)

We do the standard canonical quantization, where we replace the momentums:

Ĥ = − ℏ2

2m1
∇2

1 − ℏ2

2m2
∇2

2 + V (r1, r2)

We can then write the Schrodinger equation:

ĤΨ(r1, r2, t) = iℏ
∂

∂t
Ψ(r1, r2, t)

We cna do this via separation of variables, with Ψ(r1, r2, t) = ψ(r1, r2)ϕ(t), which gets that

ϕ(t) = e−iEt/ℏ

Ĥψ(r1, r2) = Eψ(r1, r2)

If the particles are non-interacting, we separate the potential, V (r1, r2) = V (r1) + V (r2). From this,
we find that E = E1 + E2 (via separation of variables), Ĥ1ψ1 = E1ψ1, and Ĥ2ψ2 = E2ψ2.
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if the particles are identical, any measurable property is invariant under particle swap. If we have
some Ψ(r1, r2, r3, r4, . . . , t), and we interchange r1 and r2:

Ψ(r1, r2, r3, r4, . . . , t) = ±Ψ(r2, r1, r3, r4, . . . , t)

Whether it is a plus or minus is dependent on the type of particle. For Bosons, we have +, and
for Fermions we have the −. If we have two non-interacting particles, where we can separate the
potential, and then separate the wavefunction Ψ = ΨaΨb:

Ψ(r1, r2, t) = A (Ψa(r1, t)Ψb(r2, t) ± Ψa(r2, t)Ψb(r1, t))

Let us now look at electrons, which are spin-1
2 particles. Schematically, we can write a system of 2

electrons as
Ψ(1, 2)χ(1, 2)

representing the spatial and spin parts of the wavefunction. If we interchange particles, we get
Ψ(2, 1)χ(2, 1), and we expect (since they are Fermions) that we will have a sign change in one of
the terms, not both. This means that we expect that either the spin or the spatial part will flip
signs while the other will remain the same. We also note that if we look at the triplet states, they
are bosonic, they don’t flip signs, while the singlet state is fermionic.

We then move to the periodic table, where the energy of the Hydrogen atom has a dependence on
e2. For heavier elements, any time that we have an e2, we change that to Ze2. Thus for a heavier
element, we have −z2EH0

1
n2 , where we let the ground state be 13.6 eV. When we fill the orbitals,

we fill from smallest orbital, until it is full, and then work up to the next layer, although this does
eventually breaks.

If we have N electrons in the system, we can find the max filled shell, nFermi, which then leads to
EFermi. We can then compute the ground state energy via an integral, taking into account spin as
well as the dimension of the problem. In 1 dimension:

E0 =
∑
n

En →
∫
En dn

Looking at periodic potentials, we can use the Bloch theorem, which states that we can get the
physics given a shift by just adding a phase exponential.

We then move into (non-degenerate) perturbation theory, which hinges on completeness and
orthonormality. We define our Hamiltonian as

HH0 +H1

Where we know the eigenvalues and eigenfunctions of H0, H0 |ψ0
n⟩ = E0

n |ψ0
n⟩, which are orthonormal

and complete. We assume that the solution will be of the form:

|ψn⟩ = |ψ0
n⟩ + λ |ψ1

n⟩ + λ2 |ψ2
n⟩ + . . .

We then know that H |ψn⟩ = En |ψn⟩, which we can then combine with the Hamiltonian definition
and the assumption for the wavefunction. We can then group terms by order, which gives us different
equations. The λ0 terms just give back the Schrodinger equation, and the λ terms give

H1 |ψ0
n⟩ +H0 |ψ1

n⟩ = E0
n |ψ1

n⟩ + E1
n |ψ0

n⟩
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We can then apply a ⟨ψ0
m| to both sides of the zeroth and first order equations, which leaves us with

E1
n = ⟨ψ0

n|H1|ψ0
n⟩

|ψ1
n⟩ =

∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩
E0
n − E0

m

|ψ0
m⟩

This gives the first order corrections to the energy and the wavefunction, which we see rely on
matrix elements. We also note that this only works for non-degenerate perturbation theory because
the denominator of the wavefunction corrections could be zero if we had degenerate energies.

In the degenerate case, we have two degenerate states, ψ0
a and ψ0

b , so we define |ψ0
n⟩ = α |ψ0

a⟩+β |ψ0
b ⟩.

We then find that the degeneracy is usually broken. We then take inner products with both of the
wavefunctions, and we get two equations, which can then be represented as a matrix equation. From
this, we find that

E1
± = 1

2

[
Waa +Wbb ±

»
(Waa −Wbb) + 4|Wab|2

]
Now moving to time-dependent perturbation theory, we have

H = H0(x) +H1(x, t)

where the first Hamiltonian can rely on anything except time. We know that H0 has a set of
complete and orthonormal solutions, which we will use. For a two level system, we have the basis
formed by ψa and ψb, so we can define our general state as

|Ψ(x, t)⟩ = ca(t)e−iEat/ℏ |ψa⟩ + cb(t)e−iEbt/ℏ |ψb⟩

The probability of being in either state will just be the magnitude of the coefficients. We can then
insert the general state into the time-dependent equation:

H |Ψ(x, t)⟩ = iℏ
∂

∂t
|Ψ(x, t)⟩

From this (by taking inner product on both sides with ⟨ψa| eiEat/ℏ and the corresponding state for
b), we can get the equations:

ċa(t) = − i

ℏ
H1
abe

−iω0tcb(t)

ċb(t) = − i

ℏ
H1
bae

−iω0tca(t)

Where ω0 = Eb−Ea

ℏ . We can solve this iteratively or using the rotating wave approximation.

When perturbation theory doesn’t work, like if the whole Hamiltonian is not solvable, we have two
things that might help. The first is the Variational Principle, in which we guess at a ψ, which has
some parameter that we can vary. We then normalize this, and then use the fact that

⟨ψ|H|ψ⟩ ≥ Egs

We can then compute this, and then minimize the left side by twiddling the parameter.

Finally, let us do a summary of WKB. If V (x) is a constant, V , the Schrodinger equation solutions
will be either complex or real exponentials, depending on whether E is greater than or less than V .
WKB shows that our solutions will be generalized exponentials where we replace p with an integral.
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