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1 Differential Equations
Differential equations relate changes to current values. We care because we want to track changes
in values, and we want to make predictions about things in the physical world. Being able to say
how things change is very important, and diffeqs are the main tool we use for that.

Differential equations have two types of variables. Independent variables are the input, and we
have to take them for granted. Dependent variables represent the behavior of the system that
we are interested in, and can be considered the output of the equation.

Differential equations require notation for writing derivatives. There are different types of notations.
Leibniz notation is the fractional notation, ( dydx). Newton’s notation is the prime notation (y′).
Operator notation (Dy, Dt y, D2 y) uses D as an operator to differentiate what is to the right of it.
We also have partial derivatives ( ∂y∂x , ∂xy). Newton also had special notations for time derivatives
(ẏ, ÿ).

We have seen many different examples of differential equations, the first and foremost being Newton’s
Second Law, F = ma, which is really just F = mẍ. From electromagnetism, we have Kirchoff’s
Voltage Law, Lİ + RI + q

C = E . We also have Newton’s Cooling Law, dQ
dt = kAdT

dx . Maxwell’s
equations are 4 differential equations:

∇ ·B = 0 ∇ · E = ρ

E0
∇× E + ∂tB = 0 ∇×B − 1

c
∂tE = µ0J

Let’s now go through these and flag the independent and dependent variables. In Newton’s Second
Law, we care about the position of some particle, and the position is evolving according to time.
The independent variable is t, and the dependent variable is x. In the Voltage Law, time is once
again independent, and the charge in the capacitor q is the dependendent variable (Note that I can
be determined from q). In the heating and cooling law, x and t are independent variables, and the
dependent variables are Q and T . In Maxwell’s equations, we have 4 independent variables, ~x and t,
and we have many dependent variables, ~B, ~E, ~J , and ρ.

1.1 Terminology
A diffeq is ordinary if there is just 1 independent variable. The equation is a partial diffeq if it
has more than 1 independent variable. For example, Newton’s Second Law in 1 dimension is an
ordinary diffeq, and Maxwell’s Equations are partial diffeqs.

The order of a diffeq is the highest number of derivatives in the equation. For example, F = mẍ is
a second order diffeq.

A linear equation takes the form

ay + by′ + cy′′ + · · · = f

And an equation is nonlinear if y is ever raised to a power that is not 1 (for example if it has a y2

or y5).

A solution to a differential equation is any function that when inserted as the dependent variable(s)
yields an equality.
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1.2 Methods of Solution
One of the first methods to solve a diffeq is to simply guess the answer, whether it be a random
guess or through experience. Another method is to integrate, which we could use on these:

y′ = c ÿ = −g

Another method is to ask a computer. Computers can compute the answer algebraically (looking it
up in a database), and numerically (giving a list of pairs x, y(x)).

1.3 First Order ODEs
A first order ODE is a diffeq that only includes the first derivative of the dependent variable. Here
are some examples:

y′ = x

y
y′ = y − x2 y′ = x− y2

The first of these diffeqs is separable, the second equation is linear in y (no more than y1), and the
third equation is difficult (no algebraic solutions).

1.3.1 Separable Diffeqs

Separable 1st order ODEs can be solved via separation of variables:

y′ = x

y
→ dy

dx
= x

y

From this point, we treat the differential as a fraction:

y dy = x dx

We can then integrate both sides: ∫
y dy =

∫
x dx

We can now proceed in two ways. One way is to use the indefinite integrals:

y2

2 +A = x2

2 +B

y =
√
x2 + C

The other method is to use definite integrals instead, by picking particular limits, noting that the
integrand x and the limit x are different things∫ y(x)

y(x0)
y dy =

∫ x

x0
x dx

If we do these integrals out:
1
2(y2 − y2

0) = 1
2(x2 − x2

0)

Doing this out, we can then solve for y. If we had specified the initial conditions, we could just go
down the indefinite integral route and then insert the initial conditions.
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1.3.2 Integral Curves

Say we have some diffeq y′ = f(x, y). If we plot on axes of x and y, the diffeq gives us the slope
at every single (x, y). This then gives us the direction field. The solution is something called an
integral curve, and is tangent to the line of the direction field at every point it goes through. If
y1(x) is a solution to the differential equation, then its graph is an integral curve. Let’s prove this.

Proof. The claim is that y1(x)′ = f(x, y1(x)) for every x where y1 is defined. The geometric claim
is that the slope at (x, y(x)) is the slope of the direction field. The slope at (x, y(x)) is just y′, and
the slope of the direction field is just f(x, y). Thus, we have that the solution graphs an integral
curve.

Generally, we draw direction fields via computers. Computers simply pick points in the range given,
and compute f(x, y) at each point, and then just draw it. This method is very tedious to do by
hand, so we have a different method of doing it. We instead pick the slope we’re interested in (call
it c). We know that y′ = c = f(x, y). We can plot f(x, y) = c for a few values of c. These curves
are called isoclines. We can then draw in lots of lines with slope c along the isoclines (drawing in
as many or as few as you want). Also note that integral curves cannot cross, which oftentimes forces
the integral curves to take a certain shape. They can’t cross due to the Existence and Uniqueness
theorem:

Theorem 1.1. y′ = f(y, x) has one and only one solution through (x0, y0). For there to be a
solution, f must be continuous in the vicinity of (x0, y0) (geometrically, integral curves there exist).
To get the uniqueness of the solution, ∂yf is continuous near (x0, y0) (geometrically, this implies
that there is only one integral curve that goes through this point).

1.3.3 Euler’s Numerical Method

Suppose we have an IVP, with y′ = f(x, y) and y(x0) = y0. We first choose a step size h (∆x,
dx). We can place the line element with the slope at the point (x0, y0), and then move forwards
to x1 = x0 + h. We then project the slope we found until it intersects with the vertical line at x1,
which gives us the point (x1, y1). We can then evaluate f(x1, y1) and repeat the process, placing
down the slope, moving forwards by the step size, and project the line element to get the next point.

1. Start with (xn, yn)

2. Slope An = f(xn, yn)

3. Next x is xn+1 = xn + h

4. Next y is yn+1 = yn + hAn

This method simply operationalizes the derivative, except gets rid of the limits and just works with
a small step size to get a good enough approximation:

An = yn+1 − yn
h

If our integral curve is a line, Euler’s method will be exactly correct. If the solution is convex
(concave up), Euler’s method will underestimate. On the other hand, if the solution was concave
down, Euler’s method will overestimate the solution points. For the example y′ = x2 − y2, we can
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implicitly differentiate, y′′ = 2x− 2yy′. If we now plug in initial conditions such as (0, 1), we can
compute the second derivative, which is y′′ = 2, telling us that Euler’s method would underestimate
the solution curve.

How can we get a better answer? The obvious answer is to take smaller steps, which will bring the
results closer to the actual solution curve. Error is given by the absolute value of the difference
between the exact answer and Euler’s results. One can show that the error is proportional to the
step size h, E ∼ h. Another way to try and improve is to try to improve An. To do this, we can
use higher order methods. These methods go through the process of using Euler’s method, and
then using pairs of slopes to provide an improvement (essentially looking at the second derivative in
order to correct itself):

An =
Ç
A3
n +Aen+1

2

å
This method has multiple names, Heun’s Method, Improved Euler’s Method, Modified Euler’s
Method, and Runge-Kutta 2. This method has the error being quadratic in regards to the stepsize,
E ∼ h2. Runge-Kutta has other variants, such as RK4, which has E ∼ h4.

Numerical methods do have their drawbacks. One of them is numerical instability, which is where
we run into issues with the precise storage of numbers (think about storing things as floating point
numbers and how that isn’t always accurate). Another issue is singular points. If we take the
equation y′ = y2, which has the solution y = 1

c−x . This looks innocous, but if we graph a solution,
we have that x = c is a singular point, as the solution goes from infinity to negative infinity on
either side. If we use any numerical method, after the point, the solution the numerical method will
produce will be completely wrong, no matter the step size we use. Since we can’t see the singular
points from looking at the differential equation, we can’t really do much.

1.3.4 First-Order Linear ODEs

A generic first-order linear ODE takes the form

a(x)y′(x) + b(x)y(x) = c(x)

where x is the independent variable, and a,b, and c are arbitrary functions. We see that the equation
is linear in y and y′, i.e. there are no y2, ey, etc. This equation is homogeneous if c(x) = 0. The
Standard Linear Form is written as

y′ + p(x)y = q(x)

There are many physical models that follow this, some of which include temperature, concentration,
radioactive decay, mixing, and bank interest.

Let’s look at the conduction-diffusion model. If we have a bath of some liquid that is being heated,
with some temperature Tl. If we place a sealed container in the bath, we want to find the temperature
inside of the the sealed container. The temperature changes according to Newton’s Law of Cooling:

dT

dt
= k(Tl − T )

Another situation for this model is if we’re talking about salt concentrations in a box with a
semipermeable membrane:

dC

dt
= k(Cl − C)
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We can see that we can rewrite these in the standard linear form:

dC

dt
+ kC = kCl

If we look at the standard linear form, we can solve this by guessing/using experience. We multiply
both sides by some function U :

Uy′ + Upy = Uq

The aim is to get something that looks like d
dx(. . . ) = Uq. If we had d

dx(Uy) = Uq, we’d expand the
left side and get U ′y +Uy′ by the product rule. Matching this to our equation, we see that we need
a function such that

dU

dx
= pU → dU

U
= p dx

This then gives us that
U = e

∫
p dx

This is known as the method of the integrating factor. Let’s do an example.

If we have the equation xy′ − y = x3, we can put it in standard linear form:

y′ − 1
x
y = x2

This gives us that p(x) = −1
x . Integrating this:∫

p dx = − ln |x|+ C

Thus we know that
U = e

∫
p dx = e− lnx+C = ec

x

Multiplying both sides by U , we see that we can just drop the ec constant, because we cna divide it
out from both sides:

1
x
y′ − 1

x2 y = x

We can now undo the product rule on the left side (its always Uy):

d

dx

(y
x

)
= x

Now integrating: ∫
d
(y
x

)
=
∫
x dx

Which gives us that
y

x
= x2

2 + C

Giving us the final answer that

y = x3

2 + Cx

Let’s do another example. If we have the diffeq

(1 + cosx)y′ − y sin x = 2x
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We can put this in standard linear form:

y′ − sin x
1 + cosxy = 2x

1 + cosx

We see that p(x) = − sinx
1+cosx , so we have to compute the integral:∫ − sin x

1 + cosx dx = ln(1 + cosx)

This gives us that U = 1 + cosx. Multiplying both sides by U :

(1 + cosx)y′ − sin xy = 2x

We ended up back where we started! But now we know that the left side can be written as a product
rule:

d

dx
[(1 + cosx)y] = 2x

This then gives us that

y = x2 + C

1 + cosx

Now let’s look at this method for the conduction-diffusion model, restricted to the case where the
coefficients are constant (in this case k). We know that U = e

∫
k dt = ekt, and we multiply both

sides by the integrating factor:
ektṪ + kektT = kTle

kt

Rewriting,
d

dt

Ä
ektT
ä

= kTle
kt

Rewriting and integrating:
T = e−kt

ï∫
kTle

kt dt+ C

ò
We will then put limits on this integral to make it a little more descriptive of our situation. If we
have some initial conditions t = 0→ T (0) = T0:

T = e−kt
ï∫ t

0
kTle

kt dt+ C

ò
We can see that the initial conditions control the transient part of the solution, the part that goes
away after a long period of time (in this case its because of the outside exponential decay). The
steady-state solution is controlled by Tl.

What is so special about these linear ODEs? If we take a generic linear first order ODE:

y′ + p(x)y = q(x)

We can generalize this with more terms:

. . . y′′′ . . . y′′ · · ·+ y′ + p(x)y = q(x)

These diffeqs obey the Superposition Principle:
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Theorem 1.2. If q1 produces the solution y1 and q2 produces the solution y2, then q1 + q2 produces
the solution y1 + y2, and cq1 produces cy1.

This principle does not work if we have any terms that are nonlinear, such as y2.

Let’s try and find an application for this. If we have a system with some trig input (which often
arises in physics):

y′ + ky = kq(t) q(t) = cosωt
where ω = 2π

T , where T is the period, and ω is the angular frequency.

To solve this, we ”complexify”, a trick that we will use a lot. Recall that eiωt = cosωt+ i sinωt. We
will write a different diffeq, one for a complex y:

z′ + kz = keiωt

After we solve this equation, we will just take y = Re(z), and we will be able to solve the original
equation that we are interested in. We can solve the complex equation using the integrating factor,
with U = ekt:

ektz′ + kektz = kekteiωt

d

dt

î
ektz
ó

= kekteiωt

Integrating and solving for z:

zekt = ke(k+iω)t

k + iω
+ C

Rewriting, we will find that
z = 1

1 + iω
k

eiωt + Ce−kt

This is the solution for the complex diffeq, so we need to take the real portion. One nice way to do
this is to convert to polar. If we let α = 1 + iω

k :

α =
…

1 +
(ω
k

)2
eiφ

and thus
z = 1»

1 +
(
ω
k

)2
ei(ωt−φ) + Ce−kt

Taking the real part of this:

y = 1»
1 + ω2

k2

cos(ωt− φ) + Ce−kt

where φ is the phase shift/lag (tanφ = ω
k ). If we now plot this solution, we see that we have a

sinusoid, shifted to the right, as ω and k are both positive. Therefore, φ is positive, shifting the
solution to the right. φ modulates the shift between the peaks of the input function and the solution.

If we increase k, physically it means that the heat conduction increases, and so we would expect the
solution to track the input function more closely, which checks out, as ω

k decreases, decreasing tanφ,
sending the shift towards 0. We also see that the amplitude increases. Let’s now consider the other
case, where k is very low. We expect the inside of the container to barely change even as we heat it
up. We see that ω

k increases, meaning that the amplitude of the solution function decreases, and
tanφ increases, with φ maxing out at π

2 . Thus the shift will never be worse than a quarter of the
period.
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1.3.5 Scaling

One trick that we can use is scaling:

x̃ = x

a
ỹ = y

b

This is often useful when changing units, making variables dimensionless, or reducing/simplfying
the constants in a problem. As an example, where M and T are both temperatures:

dT

dt
= k

(
M4 − T 4)

This is similar to the Stefan-Boltzmann law. We can scale the variables to make T dimensionless:

T̃ = T

M
→ T = MT̃

Inserting this into the equation:

d

dt
(MT̃ ) = k(M4 −M4T̃ 4)

Simplifying:
d

dt
T̃ = kM3(1− T̃ 4)

We can then clump kM3 into a single constant, k̃. We could then solve this equation and then
restore the constants/scaling. There are two types of substitutions like this. Direct Substitutions
are when we make new variables that are functions of old variables (T̃ = T

M ), and Inverse
Substitutions are when old variables are functions of new variables (T = MT̃ ). We have run into
these when we compute integrals, like when we do u-substitutions, which are direct substitutions.

Let’s do an example of a direct substitution, the Bernoulli Equation, which is nonlinear for n > 1:

y′ = p(x)y + q(x)yn

Note that there are no pure f(x) or constant terms in the equation. The trick to solve this equation
is to divide by yn:

y′

yn
= p(x)
yn−1 + q(x)

We will then make a substitution, v = 1
yn−1 : We can take the derivative:

v′ = (1− n) 1
yn
y′

Plugging in our substitutions:
1

1− nv
′ = p(x)v + q(x)

We can solve this equation, as it is linear in v. We can then undo the substitution:

y = n−1

…
1
v
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1.3.6 Homogenous ODEs

If we have a diffeq of the form
y′ = f(y, x) = F (y

x
)

For example:

y′ = x2y

x3 + y3

If we divide by x3:

y′ =
y
x

1 +
( y
x

)3

Another example is xy′ =
√
x2 + y2, which we can rewrite:

y′ =
…

1 +
(y
x

)2

These are invariant under ”zooming in”, or rather they are scalable as long as both x and y share
the same scaling factor:

x = ax̃ y = aỹ

Which gives us that
dx = a dx̃ dy = a dỹ

We substitute in z = y
x = ỹ

x̃ :
dy

dx
= F (y

x
) = F (aỹ

ax̃
) = F (z)

The left side of the equation becomes:

z′x+ z = F (z)

This is now solvable via separation of variables:

dz

F (z)− z = dx

x

Any time we see a homogenous equation like this, we can use the substitution z = y
x , and convert it

into a linear diffeq. Generally, we only really know how to solve linear diffeqs, we just find tricks to
convert nonlinear diffeqs into linear diffeqs, which we can solve.

1.3.7 Autonomous ODEs

Autonomous first-order ODEs have no explicit independent variable:

y′ = f(y)

Suppose f is a very unpleasant function. Can we still get qualitative information about the solution?

If we think about the isoclines of this diffeq, they all have some slope c = f(y), we have isoclines
that are horizontal lines. If we draw some integral curves, we see that they are invariant under
translation, they’re all the same curves just shifted to the left or right. y0 is a critical point if
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f(y0) = 0 (basically if the direction field is flat there). If the isocline is horizontal, and the slope of
the direction field is horizontal, then the horizontal line is a solution/integral curve:

d

dx
(y0) = 0 f(y0) = 0

Suppose we know some critical points, y0 and y1. This gives us two integral curves, and in between,
the curves have to go between them, and they cannot cross. This gives us a method of sketching
the solution to autonomous diffeqs.

Let’s do an example. Let’s say we have some deposit into a bank account. Let y be the money in
the account, and r is the interest rate. With no embezzlement, we have the diffeq ẏ = ry, which
gives us exponential growth. However, say we have some embezzlement going on, and everyday they
steal some constant amount of money:

ẏ = ry − w

If we sketch f(y) as a function of y, we have something that looks like

If y > w
r , y has an upward flow, and if y < w

r , we have a flow towards less and less y. The point w
r

is the critical point. Let’s now draw y as a function of x:

We can see that the bank embezzler could steal at a rate of wr and keep the bank balance steady.

Let’s look at logistic growth. Classical exponential growth follows the differential equation dy
dt = ky,

but logistic growth takes the form dy
dt = ay − by2. This is the same as saying k = a− by. We can

once again plot f(y) against y:
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We can now put the critical points into the second plot:

Let’s now do logistic growth with harvesting. This follows the diffeq dy
dt = ay − by2 − h. When

h = 0, we have just regular logistic growth as we’ve seen. In the case where h > 0 but small: In the
case where h� 0: In the case where h is perfect, and we have a double root:

1.4 Second Order ODEs
Most dynamical systems in physics follow some form of second order ODEs, and thus solving them
is very important. The main motivation for studying these ODEs is the equation

F = ma

This is a second order ODE, because the acceleration is the second derivative of the position of the
object:

F = mẍ

Here is a list of equations that will show up a lot:

1. Wave equation

2. Harmonic oscillator

3. Diffusion

4. Electromagnetism
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The standard form of writing a linear second order ODE is

y′′ + p(x)y′ + q(x)y = f(x)

We see that once again y and its variants is only raised to the first power. We can classify these
ODEs into homogeneous and inhomogeneous equations, where homogeneous equations are of the
form f(x) = 0. Inhomogeneous equations are of the form f(x) = 0. f(x) is often called the force, the
input, the signal, or the driver/driving term. This is the part of the equation that the experimenter
can control. Let’s look at the simplest case of second order ODEs.

1.4.1 Homogeneous, Constant Coefficients

Say we have a spring/mass/dashpot system. The spring has spring constant k, and the dashpot has
constant c. Dashpots are like the pistons that stop doors from slamming. These three parts give us
the differential equation:

mẍ = −kx− cv

We can rearrange this, and we find that

ẍ+ c

m
ẋ+ k

m
x = 0

We see that this takes the form
y′′ +Ay′ +By = 0

where A and B are both constants and the equation is homogeneous. To solve this, we assume that
the general solution takes the form

y = c1y1 + c2y2

where we can adjust c1 and c2 to match any initial conditions. We have two initial conditions, y(t0)
and y′(t0). The guess that we’re going to make is an exponential (just based on experience and
physical intuition). We can guess

y = Cert

Inserting this solution:
r2ert +Arert +Bert = 0

This looks bad, but we can just divide out the ert because it is never 0:

r2 +Ar +B = 0

We can then solve this quadratic (the characteristic equation) to get the value of r in terms of A
and B. If our value for r solves the characteristic equation, then our guess y = ert solves the ODE.
We have two solutions:

r± = −A±
√
A2 − 4B
2

This then gives us our two solutions:

y = C+e
r+t + C−e

r−t

Looking at the value of r, we have 3 cases. One is where we have real and distinct roots, another is
when we have complex roots, and the last situation is when we have real and equal roots.
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Let’s look at the first case, where we have two distinct real roots. If we have the equation
y′′ + ry′ + 3y = 0, we can see that we have the characteristic equation r2 + 4r + 3 = 0, which we
can factor ((r + 3)(r + 1) = 0), giving us the general solution

y = C1e
−t + C2e

−3t

Suppose we have the initial conditions y(0) = 1 and y′(0) = 0. If we now compute y(0):

y(0) = C1 + C2 = 1

And we can compute y′(0):
y′(0) = −C1 − 3C2 = 0

We now have a system of equations that we can solve. We find that C1 = −1
2 and C2 = 3

2 . Now we
have the specific solution for this case. Plotting this, we see that we don’t have any oscillation, as
the dashpot is strong enough to overpower the spring.

Now let’s look at the second case, where we have 2 complex roots, r = a± ib, (this implcitly tells us
the characteristic polynomial). We can guess our solution:

y = c+e
(a+ib)t + c−e

(a−ib)t

We have a theorem that helps us:

Theorem 1.3. Consider the differential equation y′′ +Ay′ +B = 0. If A,B ∈ R and y = u+ iv is
a solution to the differential equation, then u and v are both solutions to the differential equation.

Proof. We can prove this by just plugging it in:

(u+ iv)′′ +A(u+ iv)′ +B(u+ iv) = 0

If A and B are real, we can take the real part of the equation:

u′′ +Au′ +Bu = 0

And take the imaginary part:
v′′ +Av′ +Bv = 0

We can rewrite our guess (using the identity given via the triangle on homework 1):

y = eat
Ä
c+e

bit + c−e
−bit
ä

= eatα cos(bt− φ)

We have 4 unknowns and only 2 initial conditions, so how do we get the values of the constants?
One way is to just write everything out, but this isn’t smart. There is a trick that we can use, and
that is to require that y = y∗, which gets us that the y is real. This sends i to −i:

y∗ = eat
Ä
c∗+e
−ibt + c∗−e

ibt
ä

If we now say that y = y∗, we have to match terms, so we see that c+ = c∗− and c− = c∗+. We can
rewrite c+ = ceiφ, and similarly for c−:

y = ceat
Ä
ei(bt+φ) + e−i(bt−φ)

ä
= 2ceat cos(bt− φ)
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Let’s do an example. If we have the equation y′′+ 4y′+ 5y = 0, we can write down the characteristic
equation:"

r2 + 4r + 5 = 0

Solving this, we see that r = −2± i. We know the solution then:

y = e−2t [c1 cos t+ c2 sin t]

Suppose we had specified some initial conditions, such as y(0) = 1 and y′(0) = 0. WE can then use
the solution and these conditions to fix c1 and c2:

e0 [c1 cos 0 + c2 sin 0] = y(0) = 1

This condition gets us that c1 = 1. To use the second condition, we just need to differentiate:

y′(0) = 0 = −2e0 [cos 0 + c2 sin 0] + e0 [− sin 0 + c2 cos 0]

This leaves us with
0 = −2 + c2

Which tells us that c2 = 2. We could now use the triangle, with side lengths 1, 2, and
√

5:

y =
√

5e−2t cos(t− φ)

Now let’s look at the case where we have two equal, real roots. We have r = −a, where a > 0
because of physical intuition. This gets us the characteristic equation

r2 + 2ar + a2 = 0

We could write the ODE:
y′′ + 2ay′ + a2y = 0

We can guess the solution:

y = ce−at + de−at = (c+ d)e−at = c̃e−at

We see that we have just one solution? If we have an IVP, with y(0) = 1 and y′(0) = 0, we can plug
in the first condition and find that c̃ = 1. We can then use the second condition, and we find that
ac̃ = 0. This is an issue, because we end up with a contradiction if a isn’t 0! Something about our
assumption is wrong, and it turns out that it’s our guess.

Let’s do this so that we get a correct solution with two arbitrary constants, a method called reduction
of order. We have the equation y′′ + 2ay + a2y = 0. We know that e−at is a solution. Given a
solution y = e−at, we can guess another solution ue−at where u is some function of t. We now
want to find what u needs to be in order to solve the diffeq. We can take our new solution and
differentiate it repeatedly:

y = e−atu y′ = −ae−atu+ u′e−at y′′ = a2e−atu− 2ae−atu′ + e−atu′′

We can now take these to plug into the differential equation:

a2e−atu− 2a2e−atu+ 2ae−atu′ + a2e−atu− 2ae−atu′ + e−atu′′ = 0
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Simplifying:
0 = 0u+ 0u′ + e−atu′′

We have a diffeq for u now. If ue−at is a solution to our diffeq, then u′′ = 0. The solution to this
equation is just a line:

u = c1t+ c2

We can now take u and insert it back in:

y = (c1t+ c2)e−at

Let’s look at the undamped spring-mass-dashpot oscillation equation. We have that

ẍ+ c

m
ẋ+ k

m
x = 0

Generally we call k
m = ω2

0, and call c
m = 2b. The factor of 2 is there so that it condenses the equation

into:
y′′ + 2by + ω2

0y = 0

Which gives us the characteristic equation

r2 + 2br + ω2
0 = 0

Solving this with the quadratic equation:

r = −2b±
√

16b2 − 4ω2
0

2 = −b±
»
b2 − ω2

0

We see that the factor of 2 makes the result for r look cleaner. In the undamped case, b = 0, which
gives us that y′′ + ω2

0y = 0, and r = ±
√
−ω2

0 = ±iω0. This tells us that the solutions are

y = c1 cosω0t+ c2 sinω0t = A cos(ω0t− φ)

where tanφ = c2
c1
.

1.5 Phase Space
If we have the equation we just solved:

ẍ+ ω2
0x = 0 x = A cos(ω0t− φ)

Differentiating our solution:
ẋ = −Aω0 sin(ω0t− φ)

Phase space is a way to draw solutions, by plotting with the solution on the x axis and the derivative
on the ẋ axis. In this case, we will plot ellipses because of the ω0 term in the derivative, so we
instead plot against the ẋ

ω0
axis in the vertical direction, which in this case gives us concentric circles

around the origin. We can use these to get meanings for A and φ. We can take ω0t− φ:

ω0t− φ = ω0(t− φ

ω0
) = ω0(t− t0)
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A gives us the radius of the circle, and φ
ω0

gives us the starting time. Suppose we had the initial
condition x(t0) = A and ẋ(t0) = 0. This point will be located at (A, 0). Immediately after this t0, x
will decrease and ẋ will also decrease, which tells us that we go around the circles clockwise. We
can notice that any point in the phase space is on exactly one curve. These curves are often called
phase-space trajectories.

If we look at the damped spring-mass-dashpot system, we have that

r = −b±
»
b2 − ω2

0

When do we get oscillations? We get oscilations when r is complex, which is when b2 − ω2
0 < 0. For

physical problems, b > 0 and ω0 > 0. Thus we need b < ω0. We can rewrite r:

r = −b±
»
−(ω2

0 − b2)

= −b± iω

where ω2 = ω2
0 − b2. ω is sometimes called the pseudofrequency (in mathematics). The general

solution for this case is
Ae−bt cos(ωt− φ)

This is a decaying oscillation. Note that the zeroes of the function would be evenly spaced.

Plotting the damped equation in phase space, we want to plot x and ẋ. In this case, we scale the ẋ
axis into ẋ

ω . If we plot the damped solution, we are left with an inward spiral, moving clockwise. If
b is very small, the spiral takes a while to reach the center, while if b is large, then the solution
very quickly approaches the center. If we set b = 0, then we are just left with the circles we saw
previously.

Let’s look at the intuition for the spring-mass-dashpot system. We have the equation

ẍ+ c

m
ẋ+ k

m
x = 0

We rewrite this
ẍ+ 2bẋ+ ω2

0x = 0

We found that the solution is of the form

x = Ae−bt cos(ωt− φ)

We see that the solution has 4 unknowns, two of which come from the diffeq itself. b controls the
damping, and ω is based on ω0 and b. These two are based on physical properties of the system,
and are not based on initial conditions. On the other hand, A and φ depend entirely on the initial
conditions, and do not come from the ODE at all.

1.6 General Second-Order Linear Homogeneous ODES
We will now lift the restriction that we have constant coefficients, but we retain linearity. These
equations take the form

y′′ + p(x)y′ + q(x)y = 0

We can look for two solution y1 and y2 that are independent of each other (y1 6= cy2). If we have
these two solutions, then any linear combination c1y1 +c2y2 is also a solution. This can be shown via
linearity. Another interesting result is that any solution can be written as this linear combination.
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Let’s show that if y1 and y2 are solutions, then any linear combination of them is a solution. We
can do this by just plugging what we claim is also a solution into the differential equation.

(c1y1 + c2y2)′′ + p(x)(c1y1 + c2y2)′ + q(x)(c1y1 + c2y2) = 0

We can use the properties of derivatives:

c1y
′′
1 + c2y

′′
2 + p(x)(c1y

′
1 + c2y

′
2) + q(x)(c1y1 + c2y2) = 0

Rearranging terms:

c1(y′′1 + p(x)y′1 + q(x)y1) + c2(y′′2 + p(x)y′2 + q(x)y2) = 0

The claim is that y1 solves the diffeq, and thus the first term is 0. We also claim that y2 solves the
diffeq, and thus the second term is also 0. We are left with 0 = 0, and thus the superposition is a
solution.

Let’s talk about linear operators. We have seen that y′′ + p(x)y′ + q(x)y′ = 0 can be rewritten
D2y + p(x)Dy + q(x)y = 0. The beauty of this notation is that we can rewrite this in shorthand:

(D2 + pD + q)y = 0

We now have an equation of the form
Ly = 0

Where L is an operator, something that takes in a function and outputs another function. The
question is what y can we pick so that 0 comes out of the operator. L is a linear operator because
it obeys the following properties:

1. L(u+ v) = Lu+ Lv

2. L(cu) = cLu

An example of a linear operator is differentiation.

Theorem 1.4. {c1y1 + c2y2} is enough to satisfy any initial conditions.

Proof. Suppose we have the initial conditions y(x0) = a and y′(x0) = b. We claim that c1y1(x0) +
c2y2(x0) = a and c1y

′
1(x0) + c2y

′
2(x0) = b. If we have the equations

c1y1(x0) + c2y2(x0) = a

c1y
′
1(x0) + c2y

′
2(x0) = b

We can write these in a matrix form, and the Wronskian at x0 is determined by the determinant of
the matrix:

W (y1, y2)(x0) =
∣∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣∣
x0

Suppose that y1 = cy2. In this case, the determinant will be 0, and thus we can’t solve the system
of 2 unknowns.

Theorem 1.5. If y1 and y2 are solutions to the ODE Ly = 0, either W (y1, y2) = 0 for all x, or
W (y1, y2) is never 0 for any x.



PHYS373 Notes (Section 0101) Hersh Kumar
Page 19

1.7 Normalized Solutions
To normalize solutions, we pick a time, for example, t = 0. We have two solutions, Y1 and Y2, and
they must satisfy special initial conditions:

Y1(0) = 1 Y2(0) = 0 Y ′1(0) = 0 Y ′2(0) = 1

If we plot this in phase space, we see that they plot out unit vectors.

Let’s do an example, with y′′ + y = 0. The solutions are

y1 = cosx y2 = sin x

We see that these are already normalized solutions. If we have y′′ − y = 0, we have the solutions
y1 = ex and y2 = e−x. We want Y1(0) = 1 = c1 + c2. We also want Y ′1(0) = 0 = c1 − c2. We will see
that

Y1 = ex + e−x

2 Y2 = ex − e−x

2
We see that we have sinh and cosh. This makes solving the IVP really easy.

Let’s now talk about the Existence and Uniqueness Theorem. We had one for first order solutions,
where we guaranteed the existence of a unique solution given inital conditions. For second order
equations:

Theorem 1.6. If p and q are continuous for all x, then there is one and only one solution for a
given set of initial values (y0, y

′
0) for the equation

y′′ + py′ + qy = 0

The solution to this equation is y0Y1 + y′0Y2.

1.8 Inhomogeneous Second Order Linear ODEs
The equations take the form

y′′ + p(x)y′ + q(x)y = f(x)

The homogeneous version of this equation is y′′ + p(x)y′ + q(x)y = 0. f is known by many names,
such as the force, the input, the signal, or the external force. y is often called the motion, the output,
or the response. The case where f(x) = 0 is known as the associated homogeneous equation, or the
reduced equation. The soltuion to the associated equation is often known as the complementary
solution (yc) or the solution to the homogeneous equation (yh). Let’s look at some examples, such
as the driven spring-mass-dashpot system or the driven RLC circuit. If we look at the RLC circuit,
Kirchoff’s voltage law tells us that

∑
V = 0:

Lİ + IR+ q

C
= E

How do we go about solving these equations?
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Theorem 1.7. Suppose we have the differential equation

Ly = f

The solution can always be written in the following way:

y = yp + yc

In other worse:
y = yp + c1y1 + c2y2

Remember that yc = c1y1 + c2y2 solve the associated homogeneous equation. yp is known as the
particular solution, and it refers to being particular to f .

The first step is to solve the homogeneous equation. We then want to find any particular solution.

Proof. Inserting the solution into the equation:

L(yp + c1y1 + c2y2) = L(yp) + c1L(y1) + c2L(y2)

Suppose we had 2 particular solutions, u and v (which means that L(u) = f and L(v) = f). This
means that L(u− v) = L(u)− L(v) = f − f = 0.

We can make an analogy to a first order ODE with constant coefficients:

y′ + ky = q(t)

We can do this with the integrating factor, and we find that

y =
Å
e−kt

∫
q(t)ekt dt

ã
+ Ce−kt

The term Ce−kt is analogous to the complementary solution, and the first term is the particular
solution. If we have that k > 0, we have that the complementary solution is transient, and the
particular solution is the steady-state solution.

Let’s talk about the transient solutions in the second order ODE with constant coefficients:

y′′ +Ay′ +By = f(t)

When can we separate into transient and steady-state solutions? We are guaranteed that the solution
will be of the form

y = yp + c1y1 + c2y2

with c1 and c2 being fixed by the initial conditions. We know that we have 3 cases of roots for the
complementary solution:

c1e
r1t + c2e

r2t

(c1 + c2t)ert

eat(c1 cos bt+ c2 sin bt)

When do these give us stability (go to 0 at long times)? The first case goes to 0 if r1 < 0 and r2 < 0.
In the critically damped case, we need r < 0, and in the complex conjugate case we need a < 0.
Notice that all the roots have negative real parts.
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Let’s do some examples. If we take the equation

y′′ +Ay′ +By = f(t)

Finding a particular solution is easy if f is exponential:

f = f0e
αt

If this is true, we can just guess a particular solution:

yp = Ceαt

In physics, most of the important right hand sides are

1. eax, with a < 0

2. sinωx, cosωx, eiωx

3. eax sinωx

4. eax, with a ∈ C

Rewriting our equation in operator terms:

(D2 +AD +B)y = f

This operator is a polynomial P (D) (polynomial in D). P (D) is a linear operator on functions. It
is also true that P (D)eαt = P (α)eαt. This leads into the Exponential Input theorem:

Theorem 1.8. If f = eαt, then

yp = eαt

p(α) (p(α) 6= 0)

Let’s do an example of this:
y′′ − y′ + 2y = 10E−x sin x

Rewriting this in operator notation:

(D2 −D + 2)y = 10e−x sin x

We will now complexify the equation:

(D2 −D + 2)ỹ = 10e−xeix

We can then use the theorem to get the particular solution:

yp = 10e(−1+i)x

P (−1 + i) = 10e(−1+i)x

(−1 + i)2 − (−1 + i) + 2 = 10e(−1+i)x

3− 3i

We can now take this and try to get the imaginary part:

ỹp = 10
3

1
1− i

1 + i

1 + i
e−x(cosx+ i sin x)
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Doing this out, we get
ỹp = 10

6 (1 + i)e−x(cosx+ i sin x)

Taking the imaginary part:

yp = 5
3e
−x(cosx+ sin x) = 5

√
2

3 e−x cos
(
x− π

4

)
Now lets look at the phase space of a damped driven oscillator, with ω 6= ω0. If we have the
equation y′′ + 4y′ + 5y = cos 3t, we have previously seen that the complementary solution is
e−2t(c1 cos t+ c2 sin t). We have that P (D) = D2 + 4D + 5, and the complexified equation is

P (D)ỹ = e3it

We have that α = 3i, so we can use the exponential input theorem:

P (3i) = −9 + 12i+ 5 = 12i− 4 = 4(−1 + 3i)

This tells us the complex particular solution:

ỹp = e3it

4(−1 + 3i) = −1− 3i
40 e3it

Taking the real part of this:
yp = 1

40(− cos 3t+ 3 sin 3t)

In phase space, that’s an ellipse, time moving clockwise. Over time, the complementary solution
decays away.

What if we have P (α) = 0. This leads to the exponential shift rule:

P (D)(eαxu(x)) = eαxP (D + α)u(x)

Suppose P (D) = D:

D(eαxu(x)) = (Deαx)u+ eαx(Du) = αeαxu+ eαx(Su)

We can factor:
eαx(α+D)u

Suppose we had P (D) = D2:

D2eαxu = D(D(eαxu)) = D(eαx(D + α)u)

We can see that we can use the same rule again:

eαx(D + α)((D + α)u)

We could generalize this via induction, but the point is that once we have this shift rule, we can use
it to solve for cases where α is a root of P .

What if p(α) = 0? If we have the equation

(D2 +AD +B)y = eαx
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we have that p(D) = D2 +AD +B. If we want p(α) = 0, and it is a simple root of p:

yp = teαt

p′(α)

where p′(α) is the derivative of p(α) with respect to α.

If α is a double root, we have

yp = t2eαt

p′′(α)
In general, if α is an nth root of p:

yp = tneαt

p(n)(α)

Let’s check this for a simple root when p is second order:

p(D) = (D − β)(D − α) α 6= β

Let’s compute p′(D):
p′(D) = (D − α) + (D − β)

Evaluating this at α:
p′(α) = α− β

Thus the particular solution that we’re expecting is

yp = teαt

p′(α)

Now applying the operator p(D) to the particular solution:

p(D) eαt

p′(α) = 1
p′(α)p(D)eαtt

Now using the exponential shift rule:

= 1
p′(α)e

αtp(D + α)t

Now evaluating p(D + α):

p(D + α) = (D + α− β)(D + α− α) = D(D + α− β)

This tells us that
1

p′(α)e
αt(D + α− β)Dt

We know that Dt = 1, and then (D + α− β)1 = α− β:

yp = 1
p′(α)e

αt(α− β)

Note that p′(α) = α− β, and thus we are left with

yp = eαt
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Thus we see that everything works out.

Let’s do an example. If we have the ODE y′′ − 3y′ + 2y = ex. We see that α = 1, and p(D) =
(D2 − 3D + 2) = (D − 1)(D − 2). Now computing dp(D)

dD :

p′(D) = 2D − 3

Plugging in α = 1 and finding p′(α), we have that p′(1) = −1, giving us the solution

yp = xex

−1 = −xex

We can now find the solutions to the homogeneous equation, which we can see from the roots of the
equation:

yc = c1e
x + c2e

2x

Thus the general solution is
y = yc + yp = c1e

x + c2e
2x − xex

1.9 Resonance
Examples of these situations involve being on a swing, the Tacoma Narrows bridge, and opera
singers breaking glasses by singing at the correct frequency. FM radio is also driven by resonance,
and so is the way our ear interprets sound.

1.9.1 Undamped Resonance

Let’s start with undamped resonance. Let’s look at the undamped harmonic oscillator:

y′′ + ω2
0y = cos(ωt)

We can complexify the equation:
(D2 + ω2

0)z = eiωt

Using the Exponential Input Theorem:

zp = eiωt

(iω)2 + ω2
0

= eiωt

ω2
0 − ω2

When we take the real part of this:
yp = cosωt

ω2
0 − ω2

If we plot the particular solution, we see that if ω < ω0, we have a large amplitude, and when
ω � ω0, we have a small amplitude. Finally, what if ω > ω0 by a small amount, we have a large
amplitude that is opposite the amplitude of the driver, and if ω � ω0, we have a small amplitude
that is oppossite that of the driver.

In the case where ω = ω0, we have that

(D2 + ω2
0)z = eiω0t

Thus the particular solution is

zp = teiω0t

2iω0
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Taking the real part of this:
yp = t sinω0t

2ω0

This is an linearly enveloped sinusoid (enveloped by t
2ω0

and − t
2ω0

).

What do other particular solutions look like? We have that

yp = cos(ωt)
ω2

0 − ω2

but we can also add anything that solves the homogeneous equation. If we add − cos(ω0t)
ω2

0−ω2 :

yp = cos(ωt)− cos(ω0t)
ω2

0 − ω2

In the limit where ω → ω0:
yp = t sin(ω0t)

2ω0

1.9.2 Damped Resonance

For the damped resonance case, we have the equation

mẍ+ cẋ+ kx = F (t)

When F = 0, we have the homogeneous equation, and we can guess x = ert to get the characteristic
equation:

r2 + 2br + ω2
0 = 0

We can then use the quadratic formula:

r = −b±
»
b2 − ω2

0

This gets us the pseudo-frequency, ω2 = ω2
0 − b2. If we drive this system with a force, f = cos(αt),

what α gets the maximal amplitude? We find out that

ω2
R = ω2

0 − 2b2

2 Fourier Analysis
The point of Fourier Analysis is that every input can be written as a sum of exponentials, and we
can then use the Exponential Input theorem. If we have the equation

y′′ +Ay′ +By = f(t) f 6= 0

The EIT told us that sines, cosines, and exponentials make it easy to get the solution. Fourier
analysis lets us take any input function and turn it into one of these forms. Any reasonable function
f(t) with period 2π can be written in the form

f(t) = c0 +
∞∑
n=1

an cos(nt) + bn sin(nt)
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Why do these Fourier Series solve the problem? Say we have the input cos(nt). We know that
the response will be some function ycn(t). If the input was sin(nt), we would have some particular
solution ysn(t). These are both particular solutions, and we can find them via the exponential input
theorem. If we now built an input out of sums of these:

f(t) = c0 +
∞∑
n=1

an cos(nt) + bn sin(nt)

We can use linearity, and we can apply the exponential input theorem term by term. We see that
the terms an cos(nt) will return the response anycn(t), and similarly for the sine terms. We see that
the particular solution that we get is

yp = c1 +
∞∑
n=1

any
c
n(t) + bny

s
n(t)

The reason we can do this is the superposition principle. The main process with Fourier is actually
computing the series.

We are given some f(t) with period 2π, and we want to get the values of an and bn. We first start
with orthogonality. If we have two functions u and v that are continuous or not very discontinuous
on R with period 2π, then u and v are orthogonal (think perpendicular) if∫ π

−π
u(t)v(t) dt = 0

Theorem 2.1. For any two of sin(nt) for n : 1 . . .∞ and cos(mt) for m : 0 . . .∞, they are
orthogonal.

Proof. To think about this, suppose we start with 2d vectors. If we have two vectors:

~u = u1x̂+ u2ŷ ~v = v1x̂+ v2ŷ

If we take their inner product:
~u · ~v = u1v1 + u2v2

This is equal to 0 iff ~u ⊥ ~v.

Similarly, we can extend this to 3d vectors:

~u · ~v = u1v1 + u2v2 + u3v3

And once again this is 0 iff ~u ⊥ ~v.

Let us now jump to n-dimensional vectors:

~u = u1ê1 + u2ê2 + · · ·+ unên ~v = v1ê1 + v2ê2 + · · ·+ vnên

Note that just like unit vectors in 2 or 3 dimensions, êi · êj = 0 if i 6= j and 1 if i = j. The dot
product is

~u · ~v =
n∑
i=1

uivi = u1v1 + u2v2 + . . . unvn
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We can now treat i as a continous number instead of a set of discrete points, which makes u and v
into functions u(t) and v(t), and the sum becomes an integral:

~u · ~v =
∫ π

−π
u(t)v(t) dt

Another way of saying this is that functions are just infinite dimensional vectors.

Let’s now prove that sines and cosines are orthogonal. There are several different methods of doing
this, such as using trig identities, using complex exponentials, or this method, which generalizes
more easily to other situations. This strategy is to use the ODE that these functions solve. These
functions satisfy the equation

u′′n + n2un = 0

This is a family of differential equations. We can prove the orthogonality case by case. We start by
trying to prove that any two functions with m 6= n are orthogonal:∫ x

−x
u′v′ dt = 0

Integrating by parts: ∫ x

−x
u′v′ dt = (u′v)π−π −

∫ π

−π
u′′v dt

We claim that the first term is always 0. Suppose v is a sine. Evaluated at π or −π, we get 0. Let’s
suppose that u is a cosine, which has a derivative of sine, giving us another 0. The only case we
have to worry about is if both are cosines. Since cosine is even, evaluating them at −π is equivalent
to the evaluation at π, meaning that we get 0. Thus the first term is indeed always 0 if m 6= n.
Let’s now evaluate the rest of the integral. Using the ODE, we know that u′′n = −n2un. Thus the
integral becomes

n2
∫ π

−π
uv dt

Let’s go back to the original integral, and let’s integrate by parts the other way:∫ π

−π
u′v′ dt = m2

∫ π

−π
uv dt

We know that 0 is equal to the integral minus itself:

0 =
∫ π

−π
u′v′ dt−

∫ π

−π
u′v′ dt = m2

∫
uv dt− n2

∫
uv dt = (m2 − n2)

∫
uv dt

Since we are working under the asummption that m 6= n, m2 − n2 6= 0, and therefore the integral
must be 0: ∫

uv dt = 0

Thus the entire integral is equal to 0, which is what we want.

Let’s now prove the case where m = n, and one is sine and the other is cosine. We have the integral∫ π

−π
cos(nt) sin(nt) dt =

∫ π

−π

1
2 sin(2nt) dt

When we integrate this, we get some cosine evaluated at −π to π, and thus we have 0.
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We have now proven that these functions are “vectors” that point in perpendicular directions. How
do we calculate the lengths of these vectors? To get the length, we can compute them by taking the
dot product with themselves:

~u · ~u = |u|2∫ π

−π
sin2(nt) = π =

∫ π

−π
cos2(nt) dt

Thus these functions all have length squared of π.

We can now get on with converting an arbitrary function into an infinite sum of sines and cosines:

f = · · ·+ ak cos(kt) + · · ·+ an cos(nt) + · · ·

Let’s take the dot product of f and some vector u = cos(nt):∫ π

−π
f cos(nt) dt =

∫ π

−π
· · ·+ ak cos(kt) cos(nt) + · · ·+ an cos2(nt) + · · · dt

By linearity of integration and orthogonality, we know that
∫
ak cos(kt) cos(nt) = 0, and similarly

for all other terms, except for the
∫
an cos2(nt) term. We know that that term is anπ:

an = 1
π

∫ π

−π
f(t) cos(nt) dt

Via the same reasoning, we know that

bn = 1
π

∫ π

−π
f(t) sin(nt) dt

However, we still have the constant term to worry about:

f = c0 + · · ·+ ak cos(kt) + · · ·

We can think of the dot product with cos(0t), and once gain use orthogonality:∫ π

−π
f(t) cos(0t) dt =

∫ π

−π
c0 dt = 2πc0

Thus we have that c0 = 1
2π
∫ π
−π f(t) dt.

Let’s do an example. We have a function that alternates between positive and negative 1 every π.
We want to calculate the Fourier coefficients, an and bn. We can start with an:

an = 1
π

∫ π

−π
cos(nt)f(t) dt

By inspection, we can see that this is equal to 0 by symmetry. Let’s calculate bn:

bn = 1
π

∫ 0

−π
−1 sin(nt) dt+ 1

π

∫ π

0
sin(nt) dt

bn = 2(1− cos(nπ))
nπ

Let’s now think about what cos(nπ) really is. This is −1 if n is odd, and +1 if n is even, which
means that we have cos(nπ) = (−1)n. This tells us that bn is 0 when n is even, and 4

nπ when n is
odd. Thus we have that

f =
∞∑
n odd

4
nπ

sin(nt)
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2.1 Parseval’s Theorem
We now want to prove uniqueness of a Fourier series for a function. We want to prove that if
f(t) = g(t), then the corresponding Fourier series must be identical as well. We can compute the
coefficients of both series:

afn = 1
π

∫ π

−π
f cos(nt) dt = 1

π

∫ π

−π
g cos(nt) dt = agn

And similarly for the bn coefficients. Thus if two functions are equal, they have the same Fourier
series. This does not tell us that if we have the same Fourier series they are both the same function.
This leads us into Parseval’s theorem, which tells us that the Fourier basis is complete. We want to
show that the Fourier modes can be used to make any function. If we have two functions and their
Fourier series:

f(t) = a0
2 +

∞∑
n=1

an cos(nt) + bn sin(nt) g(t) = α0
2 +

∞∑
n=1

αn cos(nt) + βn sin(nt)

We can then compute the dot product f · g:

f · g =
∫ π

−π
f(t)g(t) dt =

∫ π

−π

a0
2

Ç
α0
2 +

∑
n

αn cos(nt) + βn sin(nt)
å

+ . . . dt

Since we know that
∫ π
−π cos2(nt) dt = π, and using orthogonality:∫ π

−π
fg dt = π

2 a0α0 + · · ·+ anαnπ + · · ·+ bmβmπ + . . .

This is Plancherel’s theorem. This leads into Parseval’s theorem:

Theorem 2.2.
1

2π

∫ π

−π
f2 dt =

Å1
2a0

ã2
+ 1

2

∞∑
n=1

a2
n + b2

n

2.2 Complex Formulation
We can express the Fourier series in terms of complex exponentials:

f(t) = a0
2 +

∞∑
n=1

an cos(nt) + bn sin(nt)

Using the fact that cos(x) = eix+e−ix

2 and sin(x) = eix−e−ix

2i , we can plug these into the expression
for f , and we find that

f(t) = 1
2a0e

i0t + 1
2

∞∑
n=1

(an − ibn)eint + (an + ibn)e−int

This can be rewritten
f(t) =

∞∑
n=−∞

cne
int

We have found an equally valid basis for the infinite dimensional space of 2π periodic functions:

{eint, n ∈ Z}
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2.3 Tips and Tricks
One of the major tricks that we can exploit is the symmetry of functions. A function is even if
f(−x) = f(x), and exhibits symmetry over the y-axis. A function is odd if f(−x) = −f(x), and
they exhibit 180 degree rotational symmetry.

If we integrate an even function in a symmetrical region, we can split the region in half and just
double the half-integral: ∫ L

−L
even dt = 2

∫ L

0
even dt

On the other hand, integrating an odd function over a symmetrical region is always 0:∫ L

−L
odd dt = 0

There are rules for odd/even function multiplication:

1. Even function × even function returns an even function

2. Odd function × odd function returns an even function

3. Even function × odd function returns an odd function

We know that cos(x) is an even function, and sin(x) is an odd function. We now want to show that
even functions have cosine-only series, and that odd functions have sine-only series.

Suppose we have a function f(t):

f(t) = a0
2 +

∑
n

an cos(nt) + bn sin(nt)

We can write the series for f(−t):

f(−t) = a0
2 +

∑
n

an cos(−nt) + bn sin(−nt) = a0
2 +

∑
n

an cos(nt)− bn sin(nt)

Since we know that f(t) = f(−t), we know that by uniqueness, the Fourier series must match, and
thus the series must match term by term. We see that this implie that bn = −bn, and thus bn = 0.
Thus if f is even, then the Fourier series is cosine-only. Using similar logic, we find that if f is odd,
the series is sine-only.

How can we leverage this symmetry to simplify our caclulations? We know that if f(t) is even, then
f(t) cos(nt) is also even. If we go to calculate an, we have that

an = 1
π

∫ π

−π
f cos(nt) dt = 2

pi

∫ π

0
f cos(nt) dt

and if we calculate bn:
bn = 1

π

∫ π

−π
f sin(nt) dt = 0

If f is odd:
an = 0
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and
bn = 2

π

∫ π

0
f sin(nt) dt

These symmetry arguments let us simplify our calculations a lot.

Let’s do another example. If we have a 2π periodic function that is equal to t on the interval (−π, π],
we can find the Fourier series for this. We see that it is odd, and thus an = 0. We can then compute
bn:

bn = 2
π

∫ π

0
t sin(nt) dt

Integrating by parts:

bn = 2
π

ïÅ−t cos(nt)
n

ãπ
0

+
∫ π

0

cos(nt)
n

dt

ò
= 2
π

ï−π cos(nπ)
n

− 0 + 1
n

∫ π

0
cos(nt) dt

ò
bn = −2 cos(nπ)

n

Now using the fact that cos(nπ) = (−1)n:

bn = −2(−1)n

n

This then gives us the final Fourier series:

f(t) =
∞∑
n=1

−2(−1)n

n
sin(nt)

If we want to compare the Taylor series expansion around t = 0 to the Fourier series, we can find
the Taylor series:

f(t) =
∞∑
n=0

tnf (n)(0)
n! = 0 + t+ 0 + 0 + . . .

Thus our Taylor expansion around t = 0 is just f(t) = t. We see that this completely breaks down
at any discontinuities. The Fourier series doesn’t have this issue.

Theorem 2.3. If f is continuous at t0, then f(t0) is equal to the Fourier series at t0. If f has a
jump discontinuity then the Fourier series converges to the midpoint of the jump.

These are the Dirichlet conditions.

We also notice something known as the Gibb’s phenonemon, which is what happens to the series as
it approaches a jump discontinuity, where we see a large spike right next to the discontinuity.

Now let’s look at functions that are periodic over some general period 2L. We have shown the
case where L = π, but we now want to find it for some general L. We want to find the “natural”
functions for generating Fourier series on a general period. If we have a function of time, and it has
a period of 2L:

f(t) = f(t+ 2L)

We know that cos
(
nπt
L

)
, with n ∈ Z+, 0 is also 2L-periodic. Similarly, sin

(
nπt
L

)
is also 2L-periodic.

Thus we see that ei(
nπt
L

) works the same way, because it is made up of the two 2L periodic functions
that we have. These are the “natural” functions to use when we have an arbitrary period of 2L.
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Let’s say we start with a function of a variable u. If changing from u to t maps 0 to 0 and π to
L, we have to do t = Lu

π , which is equivalent to u = tπ
L . We can now write a Fourier series for a

function that is periodic with 2L:

f(t) = a0
2 +

∞∑
n=1

an cos
Å
nπt

L

ã
+ bn sin

Å
nπt

L

ã
We also need to change the definitions of an and bn:

an = 1
L

∫ L

−L
f(t) cos

Å
nπt

L

ã
dt bn = 1

L

∫ L

−L
f(t) sin

Å
nπt

L

ã
dt

If we replace π with L, and use the natural functions instead, we can convert the formula with
period 2π into a formula for a period of 2L.

Suppose we have a function that is defined on just [0, L], such as f(t) = t2. We can make what’s
known as a periodic extension, and copy/paste it every L. We can do either an even periodic
extension or an odd periodic extension. The reason this is useful is because the even PE has just a
pure cosine series, and the odd PE has a pure sine series.

2.4 Discrete Fourier Transforms
The DFT is useful when we look at real world data. For example, if we have some experiment with
a signal. Data in the real world is often stored discretely, not continuously. We can store data as a
list of coordinates:

(0, f(0)), (∆t, f(∆t)) . . . ((n− 1)∆t, f((n− 1)∆t))

We have n datapoints. Conventionally, we pick a set of units where ∆t = 1, so our samples take
place at integer locations. What are the natural functions for describing this kind of data? We can
create a periodic extension of a set of datapoints just by repeating the list of points again and again.
The period of the list is just the number of elements in the dataset, which is N . We can find that
the “natural functions” are vectors

~un = e
2πixn
N

where ~un is a vector with N elements, each one of which corresponds to a value of x.

If we have a list of data fx:

fx =
N−1∑
n=0

Fne
2πixn
N

where x runs from 0 to N − 1, and n also runs from 0 to N − 1.

If we compute the dot product of two of these natural functions:

~un · ~vn =
∑
x

u∗nvm =
∑
x

e−
2πixn
N e

2πixm
N

=
∑
x

e
2πi(m−n)x

N

When m = n, we have e0 = 1, so we are left with N . When m 6= n, we get 0, (prove this on
homework 5). Essentially, we have that

~un · ~vn = Nδnm
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We then have the Discrete Fourier Transform:

fx =
∑
k

Fke
2πi
N
kx

How do we find Fk? To compute it, we use orthogonality:∑
n

e−
2πi
N
jnfn =

∑
n

e−
2πi
N
jn
∑
k

Fke
2πi
N
kn =

∑
k

Fk
∑
n

e
2πi
N

(k−j)n

Using the argument we just made, we know that the sum over n is just Nδkj :∑
k

FkNδkj = NFj

If we now put a 1
N before every step, we have that

Fj = 1
N

∑
n

e−
2πi
N
jnfn

We can look into the Fourier Modes forming a basis. We can write out that

fn =
∑
x

fxδxn

fn is a vector in an N -dimensional space, and for some fixed n, δnx is the 0 vector with a single 1 in
the xth slot. We have a simple orthonormal basis:

ên · êm =
∑
x

δnxδmx = δmn

Fk describes the same vector as fn, but in a different basis. For a fixed n, un is a vector of N
objects, with the entries:

unk = e
2πi
N
nk

These vectors form an orthogonal basis (not orthonormal since the dot product un · um =∑
x u
∗
nxumx = Nδmn is not 1).

We have that
fn =

∑
k

Fke
2πi
N
nk

Where
Fk = 1

N

∑
n

fne
− 2πi

N
nk

F is the Discrete Fourier Transform (DFT) of f .

There are certain conventions, such as placing the negative and positive signs in different places, as
well as a convention where we change where the 1

N is placed.

Let’s do an example. If we have that f =


1
2
1
2

, we want to find F . We see that N = 4. Let’s start

by computing F0:
F0 = 1

4
∑
n

fne
0 = 1

4 [1 + 2 + 1 + 2] = 3
2
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Now computing F1:
1
4
[
(−i)0 · 1 + (−i)1 · 2 + (−i)2 · 1 + (−i)3 · 2

]
= 0

If we do this process similarly for the other two terms, we find that

F = 1
4


6
0
−1
0


If we have real fn, the output of the DFT will give us N real numbers. If Fk is complex, then we
will end up with 2N real numbers. We ideally want to just end up with N , so how do we resolve
this? If f is real, we have that F is even symmetric, where Fk = F ∗−k. This brings down the amount
we have to specify by half, since we can just pair things up on both ends, giving us N real numbers.
Thus we have the same amount of information in F that we do in f .

2.5 Dirac Delta Function
Let us compare the Kronecker delta function to the Dirac delta. The Kronecker delta takes in two
indices/arguments, m and n, and it is defined to be 1 when m = n and 0 otherwise. We have seen
one of the uses of this function, for picking out a piece of a vector or sum, as a sort of indicator
function. If we have a list or vector fx, getting a particular value of the list fn can be obtained by
summing over all the values of x and multiply by the Kronecker:

fn =
∑
x

δnxfx

The Dirac delta function is similar, but is a function of two continuous variables instead:

f(y) =
∫ ∞
−∞

δ(x− y)f(x) dx

The Dirac Delta picks out f(y) from the integral, and nothing else. We want the following to be
true:

1 =
∫ ∞
−∞

δ(x− y) dx

To make this true, we need the value when x = y to be ∞. This function only really makes sense
when it’s inside of an integral. Essentially, the Dirac delta is the limit of a sequence of functions.
We’re looking for a function that when integrated gives us 1. If we look at when y = 0:∫ ∞

−∞
δ(x) dx = 1

We also want ∫ ∞
−∞

δ(x)f(x) dx = f(0)

If we think back to the Gaussian:
gσ(x) = 1√

2πσ2
e−

x2
2σ2

The coefficient on the outside was chosen to make sure that∫ ∞
−∞

gσ(x) dx = 1
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If we plot the Gaussian centered around x = 0, the larger the value of σ, the wider the distribution
is. As we decrease σ, the distribution gets taller and narrower. If we take σ to be very small, it falls
off very quickly, and gets taller and taller. The delta function is the limit as σ → 0 of the Gaussian:

δ(x) = lim
σ→0

gσ(x)

There are all sorts of other functions that have the same behavior, such as the unit impulse that we
looked at in homework 6. Let’s do an example. If we have an infinitely thin, very long rod, and we
place a point particle at some x0, with charge Q. If we want to compute the total amount of charge
to the left of some x value:

Q(x) =
∫ x

−∞
q(y) dy

Since we put down a point particle, Q(x) for all values to the left of the point particle is 0, and to
the right all points have Q(x) = Q. What is the charge density q? It’s the Dirac Delta:

q = Qδ(x− x0)

Let’s make sure: ∫ x

−∞
Qδ(y − x0) dy = Q

∫ x

−∞
δ(y − x0) dy

We can see that this is 0 if x < x0, and Q if x > x0.

Suppose we had some continuous function f(t) that we wanted to sample at certain times {n}. We
can sample it with the delta function:

f(n) =
∫ ∞
−∞

δ(t− n)f(t) dt

We can actually relate the step function to the delta function:

θ′(x) = δ(x)

where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0.

Now let’s look at the derivatives of the delta function.∫ ∞
−∞

δ′(x)f(x) dx

Integrating by parts, with dv = δ′(x) and u = f(x):

[f(x)δ(x)]∞−∞ −
∫ ∞
−∞

δ(x)f ′(x) dx

The first term is just 0, and the second term is just f ′(0):∫ ∞
−∞

δ′(x)f(x) dx = −f ′(0)

What about scalars inside the delta function:

δ(ax)
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Remember that
δ(x) = lim

σ→0
gσ(x) gσ(x) = 1√

2πσ2
e−

x2
2σ2

If we now plug in ax for x:
gσ(ax) = 1√

2πσ2
e−

a2x2
2σ2

Let us now absorb the a into σ. Let s = σ
a , which means that σ = as:

lim
σ→0

= lim
s→0

We can then rewrite the rest of it:

gσ(ax) = 1√
2πs2a2

e−
x2
2s2 = 1√

a2
gs(x)

Thus we have that
lim
σ→0

gσ(ax) = lim
s→0

1
|a|
gs(x) = 1

|a|
δ(x)

What about the delta function of another function, δ(g(x)). If g has no zeros, then the delta function
is always 0. Suppose g has zeroes xi. In the neighborhood of each xi, g looks linear, with slope
g′(xi). We can Taylor expand in the neighborhood of xi:

δ(g(x)) = δ(0 + g′(xi)(x− xi) + . . . ) = δ(g′(xi)(x− xi)) = δ(x− xi)
|g′(xi)|

We can then sum over all xis:
δ(g(x)) =

∑
i

δ(x− xi)
|g′(xi)|

Lets do an example. If we have δ(x2 − a2), we have that g(x) = x2 − a2 = (x− a)(x+ a). We see
that we have zeroes at x = ±a. Taking the derivative:

g′(x) = 2x

We can then write out the delta function:

δ(x2 − a2) = 1
|2a|δ(x− a) + 1

| − 2a|δ(x+ a) = 1
|2a| (δ(x− a) + δ(x+ a))

If we now put this inside an integral: ∫
δ(x2 − a2)f(x) dx

If we look at when x ≈ −a, such as x = −a+ ε. The delta function will output:

δ((−a+ ε− a)(−a+ ε+ a)) = δ(−2aε+ ε2)

We know that ε is very small, so we can drop the ε2 term, giving us δ(−2aε).
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2.6 Fourier Transforms
If we have an operator, like the differential operator, it takes in a function of x and spits out another
function of x. A transformation is similar, in that it takes in a function of x, but it spits out a
function that is in a different variable.

Let’s look at the complex exponential Fourier series. If we have a function f(x) over a generic
period:

cn = 1
2L

∫ L

−L
f(x)e

−inπx
L dx

And
f(x) =

∑
n

cne
inπx
L

This takes in a function of x, and spits out a coefficient, but the Fourier transform spits out another
function.

The Fourier Transform of a function f(x) is defined as

F (k) = 1
2π

∫ ∞
−∞

e−ikxf(x) dx

These are like the cns that we got when we did Fourier Series. We can similarly reconstruct f(x):

f(x) =
∫ ∞
−∞

F (k)eikx dk

Let’s write f(x) out:
f(x) =

∫ ∞
−∞

dk eikx · 1
2π

∫ ∞
−∞

dy e−ikyf(y)

=
∫ ∞
−∞

dy f(y) 1
2π

∫ ∞
∞

eik(x−y)

This inner integral is just δ(x− y), as we will show. To do this, we want to carefully let the period
of the Fourier series go to infinity. We can write down cn:

cn = 1
2L

∫ L

−L
f(x)e−i

πn
L
x dx

Let kn = nπ
L . The change between each k ∆kn = π

L , and when L→∞, ∆kn → 0. We can substitute
in kn:

cn = ∆kn
2π

∫ L

−L
f(x)e−iknx dx

Plugging these into the Fourier series:

f(y) =
∑
n

ï∆kn
2π

∫ L

−L
e−knxf(x) dx

ò
eikny

If we say that F (k) = 1
2π
∫∞
−∞ f(x)e−iknx dx, then

Now as we take L→∞, we see that we get F (kn) inside the sum, and we are left with

f(y) =
∑
n

∆knF (kn)eikny
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The pieces that are left have that ∆kn → 0, meaning that this is just a Riemann sum, giving us an
integral:

f(y) =
∫
F (k)eiky

This is just the Fourier Transform.

If we look at the formulas for F (k) and f(x) side by side, we see that they only have superficial
differences, one being a function of k, the other of x, on having a 1

2π , and a sign difference in the
exponential. People say that k and x are “dual”, because they store the same amount of information.
Also note that their units/dimensions are related. kx is dimensionless, and thus if x is length, k
must be one over length. Another thing, if we Fourier transform a function of time, we get that
k = ω, with units of one over time, which is frequency.

There are many conventions when talking about Fourier Transforms, such as the placement of the
sign, the placement of the 1

2π , and sometimes the FT of f(x) (what we write as F (k)) is written as
f(k). We have essentially overloaded the definition of f , to be two different functions.

2.7 Sine and Cosine Transforms
Let’s say we want to take the sine transform of fs(x), which spits out Fs(k):

fs(x) =
…

2
π

∫ ∞
0

Fs(kx) dk

Fs(k) =
…

2
π

∫ ∞
0

fs(x) sin(kx) dx

For the cosine transform, we just change the sines to cosines.

2.8 Examples of Fourier Transforms
We can take the Fourier transform of the delta function:

1
2π

∫ ∞
−∞

δ(x)e−ikx dx = 1
2π

The Fourier transform of δ(x− y):

1
2π

∫ ∞
−∞

δ(x− y)e−ikx dx = 1
2πe

−iky

If we want to find the inverse Fourier transform of 1
2π :

f(x) =
∫ ∞
−∞

1
2πe

ikx dk = 1
2π

∫ ∞
−∞

eikx dk = δ(x)

If we want to find the inverse Fourier transform of 1
2πe
−iky:

f(x) =
∫ ∞
−∞

1
2πe

−ikyeikx dk = 1
2π

∫ ∞
−∞

eik(x−y) dk = δ(x− y)

Let’s do the FT of eipx:
1

2π

∫ ∞
−∞

eipxe−ikx dx = 1
2π

∫
eix(p−k) dx = δ(p− k)
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Taking the Fourier transform of a constant function, f(x) = 1:

1
2π

∫ ∞
−∞

1e−ikx dx = δ(k)

If we Fourier transform this again, we have already found that we get 1
2π . With our convention,

taking the FT twice is the same as dividing by 2π, and this is true for all functions.

2.9 Linearity
If we want to find the Fourier transform of f(x) + g(x):

1
2π

∫ ∞
−∞

(f(x) + g(x))e−ikx dx

Integration follows linearity, so we can easily split this up, and we see that we have

F (k) +G(k)

Now if we look at scaling a function cf(x), we see that the scalar will just pull out of the integral,
and thus we will be left with cF (k). Thus the Fourier transform is a linear transformation.

We can also look at Fourier transforming the derivative of a function:

1
2π

∫
df

dx
e−ikx dx

Integrating by parts:

1
2π

ïî
e−ikxf

ó∞
−∞
−
∫ ∞
−∞

f(−ik)e−ikx dx
ò

= 0 + ik

2π

∫
fe−ikx dx = ikF (k)

Where we have made the assumption that f goes to 0 as x→∞. Since we can “recursively” define
the derivative:

dnf

dxn
= d

dx

Å
dn−1f

dxn−1

ã
We know that the Fourier transform of the nth derivative is

dnf

dxn
→ (ik)nF (k)

2.10 Solving ODEs with Transforms
Say we have the equation

ÿ + 2bẏ + ω2
0y = f(t)

We can Fourier transform both sides:

i2ω2Y (ω) + 2biωY (ω) + ω2
0Y (ω) = F (ω)

Y (ω) = F (ω)
ω2

0 − ω2 + 2ibω
We now know the Fourier transform of the solution, and we can take the inverse Fourier transform
to get y(t).
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3 Laplace Transforms
Laplace Transforms help solve IVPs, where we have some system governed by an equation, as well
as initial conditions that can define the constants. The idea behind Laplace transforms is that it is
hard to go from the equation to a system.

The methodology is to take the equation and to take the Laplace Transform of it. This returns
some algebraic equation in terms of Y = L(y), which can be solved for Y , and then do an inverse
Laplace transform to get y. The hardest part of this process is taking the inverse Laplace transform
of the function Y .

Let’s start with power series. Power series let us express some function A(x):

A(x) =
∞∑
n=0

anx
n =

∑
a(n)xn

Let’s do an example. If all of the values of an are 1:

A(x) = 1 + x+ x2 + x3 + · · · = 1
1− x

We can do another example, where a(n) = 1
n! :

A(x) = 1 + x+ x2

2! + x3

3! + · · · = ex

The Laplace transform is the continuous analogue of the power series, where n is no longer just
integers.

A(x) =
∫ ∞

0
a(t)xt dt

This is not the way people normally write it. Instead, it is generally written:

A(x) =
∫ ∞

0
a(t)et lnx dt

Note that this is unlikely to converge if ln x > 0 or x > 1. It is really bad if x < 0. Thus we want
0 < x < 1. We can do a substitution −s = ln x, to write the transform as

A(s) =
∫ ∞

0
a(t)e−st dt

The Laplace transform takes in a function of t, and spits out a function of s. There are multiple
notations for representing it, but often it takes the form

L(f(t)) = F (s)

Note that the transform is linear, so L(f + g) = L(f) + L(g), and L(cf) = cL(f).

Let’s do some examples. Lets take the function f(t) = 0. As expected, L(0) = 0. Let’s do the
Laplace transform of 1.

L(1) =
∫ ∞

0
1e−st dt = lim

R→∞

∫ R

0
e−st dt = lim

R→∞

ï
e−st

−s

òR
0
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Evaluating the bounds and computing the limit:

= lim
R→∞

e−sR − 1
s

= 1
s

However, this is only true if s > 0, and remember that s = − ln x, with 0 < x < 1.

Let’s look at the Laplace transform of eatf(t):

L(eatf(t)) =
∫ ∞

0
e−st(eatf(t)) dt

=
∫ ∞

0
e−t(s−a)f(t) dt = F (s− a)

We see that it is the Laplace transform of f(t) evaluated at a.

We can compute the Laplace transform of the exponential function itself, f(t) = eat. We can rewrite
this as eat × 1. Using what we just found about and the Laplace transform of 1, we can deduce that
the Laplace transform of eat is

L(eat) = 1
s− a

(s > a)

This is the exponential shift rule.

We can do another one. Take the function f(t) = e(a+ib)t. Using the same trick as for the regular
exponential, we find that

L(e(a+ib)t) = 1
s− (a+ ib) (s > a)

We can do the transform of cos(at), by using the fact that

cos(at) = 1
2(eiat + e−iat)

Using linearity and the exponential shift rule:

L(cos(at)) = 1
2

Å 1
s− ia

+ 1
s+ ia

ã
We can see that the complex conjugate of this is just itself, and thus the function must be real:

L(cos(at)) = 1
2

2s
s2 + a2 = s

s2 + a2 (s > 0)

We can find an inverse of a Laplace Transform, but its horrible:

f(t) = L−1(F (s)) = 1
2πi lim

T→∞

∫ γ+iT

γ−iT
estF (s) dt

Instead of doing this, we’ll build a table.

Let’s do an example. If we have F (s) = 1
s(s+3) , and we want to find f(t). We can do partial fraction

decomposition first:
1

s(s+ 3) = A

s
+ B

s+ 3
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Where
A(s+ 3) +Bs = 1→ 3a+ (a+ b)s = 1

Now letting s = 0, we find that a = 1
3 , and from there we see that b = −1

3 . We now have that

F (s) = 1
3s −

1
3s+ 9

Since the Laplace transform is linear, we can just split the two and compute the inverses separately:

f(t) = 1
3 −

1
3e
−3t

There is an ambiguity in the inverse Laplace transform, because the inverse doesn’t care about
anything before 0, so different functions that match after 0 can have the same transform.

Let’s do polynomials, such as f(t) = tn: ∫ ∞
0

e−sttn dt

Integrating by parts:

=
ï
tne−st

−s

ò∞
0
−
∫ ∞

0
ntn−1 e

−st

−s
dt = n

s

∫ ∞
0

tn−1e−st dt

We have shown that L(tn) = n
sL(tn−1). Now recursively using this rule, and we find that n!

sn+1 .

Now taking the Laplace transform of the step function L(uab(t)):

uab(t) = ua(t)− ub(t) = u(t− a)− u(t− b)

L(uab(t)) = e−as

s
− e−bs

s

Taking the Laplace transform of an impulse of width w and height h:

L(hu0w(t)) = h

Å
e0

s
− e−ws

s

ã
= h

s
− he−ws

s

If we take the limit as w → 0 when h = 1
w , we expect the impulse to approach the delta function.

Taking the limit of the Laplace transform of the impulse with h = 1
w :

lim
w→0

1− e−ws

ws
= lim

w→0

se−ws

s
= lim

w→0
e−ws = 1

Thus we have shown that the Laplace transform of the Dirac Delta is 1.

Let’s do an example diffeq:
y′′ + y = Aδ(t− π

2 )

With y(0) = 1 and y′(0) = 0. Taking the transform of the equation:

s2Y − sy(0)− y′(0) + Y = Ae−
π
2 s
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Solving for Y :

Y = s+Ae−
π
2 s

s2 + 1 = s

s2 + 1 + Ae−
π
2 s

s2 + 1

Now taking the inverse Laplace Transform:

y = cos t+Au
(
t− π

2

)
sin
(
t− π

2

)
We can do another example:

y′ + ay′ + by = f(t)

with y(0) = 0 and y′(0) = 0. Taking the Laplace transform:

s2Y + asY + bY = F (s)

Rewriting:
(s2 + as+ b)Y = F

Y = F

s2 + as+ b

1
s2 + as+ b

= W (s)

This is known as the transfer function, and its inverse Laplace transform W (t) is known as the
Green’s Function. It is the response of the system to f = δ.

3.1 Convolution
If we have two functions F (x) =

∑
n anx

n and G(x) =
∑
n bnx

n, with Laplace transforms F (s) =∫∞
0 e−stf(t) dt and G(s) =

∫∞
0 e−stg(t) dt. Suppose we want to find the Laplace transform of

f(t)g(t)? If we look at the power series:

f(t)g(t) =
∑
n

anbnx
n

We can write this as sum new power series

F ·G =
∑
n

cnx
n

The constant term will just be a0b0 in this series. For c1, we want all the terms that have x1 in
them. The only way to get them is if we multiply a constant against a linear term:

c1 = a0b1 + a1b0

For c2:
c2 = a0b2 + a1b1 + a2b0

In general:

cn =
n∑
j=0

ajbn−j
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From this, we can get the convolution operator:

(f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ)dτ

Another definition is
F (s)G(s) =

∫ ∞
0

e−st(f ∗ g) dt

We can find this via writing out the integrals on the left side:∫ ∞
0

e−suf(u) du
∫ ∞

0
e−svg(v) dv

Writing this as a double integral: ∫∫ ∞
0

e−s(u+v)f(u)g(v) dudv

=
∫ ∞

0
dt

∫ t

0
du e−stf(u)g(t− u) · J

Where J is the Jacobian, which in this case is just 1. the e−st can be pulled out to the second
integral:

=
∫ ∞

0
dte−st

∫ t

0
du f(u)g(t− u)

We see that the inner integral is what we defined the convolution to be.

Essentially the convolution tells us that

L(f ∗ g) = L(f) · L(g) = L(g ∗ f)

Let’s do some examples. If we want to find t2 ∗ t:∫ t

0
dτ (τ2)(t− τ) =

∫ t

0
dτ (tτ2 − τ3) =

ï
tτ3

3

òt
0
−
ï
τ4

4

òt
0

= t4

12

Let’s take the Laplace transform of this function:

L
Å
t4

12

ã
= 2
s5

Recall that L(tn) = n!
sn+1 . Taking the transform of the first and second pieces:

L(t2) = 2!
s3 L(t) = 1

s2

Multiplying them together, we see that 2
s3

1
s2 = 2

s5 , which is what the convolution told us!

Computing the convolution of f(t) and 1, f(t) ∗ 1:

=
∫ t

0
dτ f(τ) =

∫ t

0
f(τ) dτ

Let us now convolve 1 with f :
=
∫ t

0
dτ 1 · f(t− τ)
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Doing a change of variables, and making u = t− τ :∫ 0

t
−du f(u) =

∫ t

0
du f(u)

Thus we have shown that the convolution in this case is commutative, (f(t) ∗ 1) = (1 ∗ f(t)).

Another interesting thing is that the δ function is like the identity for the convolution operator:

f ∗ δ =
∫ t

0
dτ f(τ)δ(t− τ) = f(t)

We can also do this via Laplace transforms. Let F = L(f). We know that L(δ) = 1, and thus
F · 1 = F .

Lets talk about properties of the convolution. One property is that it is a bilinear operator. This
means that

(f + g) ∗ h = f ∗ h+ g ∗ h

And
f ∗ (g + h) = f ∗ g + f ∗ h

Looking at the interaction with scalars:

(cf) ∗ (dg) = cd(f ∗ g)

Something that is harder to show, is that convolution is associative:

(f ∗ g) ∗ h = f ∗ (g ∗ h)

Let’s do an example. If every week we deposit some nuclear waste, starting at τ = 0. At time t,
how much nuclear waste is in the facility can be given via:∑

τi

f(τi)∆τie−k(t−τi)

Converting this to a continuum version, we have

f ∗ e−kt

Moving back to ODES with the Green’s Function:

y′′ + ay′ + by = f y0 = 0, y′0 = 0

Taking the Laplace transform:

s2Y + asY + bY = F → Y = F

s2 + as+ b
= 1
s2 + as+ b

· F

Each of these is the Laplace transform of a function, the first being the weight W (t), convolved
with f(t):

y = W (t) ∗ f
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If we have two functions f and g, with Fourier transforms F and G, we have that F
Ä
f∗g
2π

ä
= FG:

F (k)G(k) = 1
2π

∫ ∞
−∞

e−ikuf(u) du 1
2π

∫ ∞
−∞

e−ikvg(v) dv

1
4π2

∫∫
du dv e−i(u+v)kf(u)g(v)

Now doing a change of variables, with x = u+ v, making v = x− u and dv = dx. The Jacobian of
this transformation is 1, so we are left with

1
4π2

∫∫
du dx e−ikxf(u)g(x− u)

Rewriting this:
1

2πdx e
−ikx 1

2π

∫
du f(u)g(x− u)

This is a Fourier transform:
= F

Å
f ∗ g
2π

ã
Thus proving the identity we stated.

4 Linear Spaces and Eigenvalue Problems
4.1 Linear Spaces

If you have an arbitrary vector ~f , we can break it down into its components given the basis vectors
of your basis:

~f = fxx̂+ fyŷ

Suppose we have some vector and we want to find its component along a certain direction. We can
obtain it via projection:

fx = ~f · x̂

Suppose we had a different basis, such as the û and v̂ basis. The vector ~f is the same, but the
components will be different (fx and fy are useless now, we want fu and fv):

~f = fuû+ fvv̂

Once again we can find the components:

û · ~f = fuû · û+ fvû · v̂ → fu = û · ~f

We can write down a vector using the components in the basis:

x̂ =
ï
x1
x2

ò
But we don’t need this, we can just use the facts that x̂ · x̂ = 1, x̂ · ŷ = 0ŷ · x̂, and ŷ · ŷ = 1.

If we want to be able to compute the dot product of two arbitrary vectors ~f and ~g:

~f · ~g = (fxx̂+ fyŷ) · (gxx̂+ gyŷ) = fxgxx̂ · x̂+ fxgyx̂ · ŷ + fygxŷ · x̂+ fygyŷ · ŷ
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Now using the facts that we know, we have that

~f · ~g = fxgx + fygy

Which is what we expected.

We can write this in a more slick notation, which generalizes to any number of basis vectors:

~f =
∑
m

fmm̂ ~g =
∑
n

gnn̂

We can take the dot product:
~f · ~g =

∑
m

∑
n

fmgnm̂ · n̂

We can now use the relationship between the basis vectors, when we know that m̂ · n̂ = δmn:

~f · ~g =
∑
mn

fmgnδmn

Also note that these bases are complete, which means that any 2D vector can be written in terms of
the basis vectors. However, for 3D, x̂ and ŷ are not enough, we need a third orthogonal vector, ẑ.
For higher dimensions, we run out of letters, so we switch to ê1, ê2, ê3, . . . , ên. However, these are
not the only complete set of basis vectors, we have other ones such as the DFT basis. We call the
generalized dot product the inner product when talking about higher dimensions.

4.2 Dirac Bra-Ket Notation
A column vector ~v is written as |v〉, called a “ket”. We write row vectors ~u† as 〈u|, known as a “bra”.
These are named this way as a pun, and when we take the inner product:

〈u, v〉

Is also known as the bracket of u and v. We can write a vector in terms of its components:

|v〉 = vx |x〉+ vy |y〉

And we can write row vectors:
〈v| = 〈x| v∗x + 〈y| v∗y

If we now compute the self inner product:

〈v|v〉 = v∗xvx 〈x|x〉+ v∗xvy 〈x|y〉+ v∗yvx 〈y|x〉+ v∗yvy 〈y|y〉

4.3 Inner Product
We can compute the inner product of two vectors |f〉 and |g〉 in both directions, and we find that

〈f |g〉 = (〈g|f〉)∗

The inner product is also bilinear. Suppose |g〉 = |1〉 + |2〉, where |1〉 and |2〉 are two arbitrary
vectors. The inner product

〈f |g〉 = 〈f |1〉+ 〈f |2〉
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Similarly, if |g〉 = α |1〉, then
〈f |g〉 = α 〈f |1〉

The same properties hold for |f〉:

|f〉 = |1〉+ |2〉 → 〈f |G〉 = 〈1|g〉+ 〈2|g〉

And (this one is slightly more tricky)

|f〉 = α |1〉 → 〈f |g〉 = α∗ 〈1|g〉

This is because to go from |f〉 to 〈f | we have to take a complex conjugate.

An inner product space is a space in which we have vectors and there exists a function that acts
like the inner product. Take for example 3D vectors. The inner product in this case is what we
normally think of as the dot product:

3∑
n=1

fngn

Let us take another example. If we have a D-dimensional Euclidean complex-valued space, the inner
product is

D∑
n=1

f∗ngn

What about an infinite dimensional space, such as a space with infinite components, that is complex
valued. We can still rely on 〈m|n〉 = δmn, but we have to do an infinite sum:∑

n

f∗ngn

Suppose the domain is all real numbers in the range (−π, π), and for each of them, we have a
complex-valued component. The analogous inner product for this is an integral instead of a sum:∫ π

−π
f∗(n)g(n) dn

Note that we could change the range, and it would only change the bounds of the integral.

Suppose we have a set of vectors {|I〉} that forms an orthogonal basis. That is:

〈I|J〉 = N2
I δIJ

for any two vectors |I〉 and |J〉 in the set. We can compute the self-inner product:

〈I|I〉 = N2
I δII = N2

I

If we generate a vector |i〉 = 1
NI
|I〉, and do something similar for all vectors in the set:

〈i|j〉 = 1
N∗I

1
NJ
〈I|J〉 = N2

I

|NI |2
δIJ

Suppose we are now given a vector |f〉, and we need to find the components in a particular basis,
such as the |i〉 basis:

|f〉 =
∑
i

ci |i〉
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To compute the components, we do it the same way we did it before:

〈j|f〉 = 〈j|
∑
i

ci |i〉〉 =
∑
i

ci 〈j|i〉

Where we have leveraged linearity of the inner product and summation. We know that 〈j|i〉 = δij :

〈j|f〉 = cj

If we have a space of complex valued components of vectors with the range (−π, π):

〈f |g〉 =
∫ π

−π
f∗(x)g(x) dx

|f〉 =
∫ π

−π
f(x) |x〉 dx

How can we get the component of |f〉 at some value of x = x0 (in the range (−π, π)). To do this,
we take the inner product:

〈x0|f〉 =
∫ π

−π
f(x) 〈x0|x〉 dx

We want this to be equal to f(x0), so what does 〈x0|x〉 have to equal, it must equal δ(x− x0):

〈x|y〉 = δ(x− y)

If we compute some inner product with two kets:

|f〉 =
∫
f(x) |x〉 dx |g〉 =

∫
g(x) |x〉

〈f |g〉 =
Å∫

f∗(x) 〈x| dx
ãÅ∫

g(y) 〈y| dy
ã

=
∫∫

f∗(x)g(y) 〈x|y〉 dy dy

Using the orthogonality relationship:
=
∫
f∗(x)g(x)

If we write a ket via the complex form:

|f〉 =
∑
k

ck |k〉 |k〉 =
∫
eikx |x〉 dx

And if we now compute some inner product:

〈p|k〉 =
Å∫

e−ipx 〈x| dx
ãÅ∫

eiky |y〉 dy
ã

=
∫∫

ei(ky−px) 〈x|y〉 dx dy

=
∫
ei(k−p)x dx = 2πδpk

Thus we have that
〈p|k〉 = 2πδpk

Then if we take some arbitrary inner product:

〈k|f〉 = 2πck
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If we solve for ck:
ck = 1

2π 〈k|f〉 = 1
2π

∫ π

−π
e−ikxf(x) dx

This is just making clear that the Fourier expansion is just writing a vector out as a set of components
in the Fourier Basis.

Let’s take the inner product of two vectors in the Fourier Basis:

|f〉 =
∑
k

ck |k〉 |g〉 =
∑
k

dk |k〉

Taking the inner product:

〈f |g〉 =
Ç∑

k

c∗k 〈k|
å(∑

p

dp |p〉

)
=
∑
kp

c∗kdp 〈k|p〉

= 2π
∑
k

c∗kdk

Thus we have that ∫
f∗(x)g(x) dx = 〈f |g〉 = 2π

∑
k

c∗kdk

This gives us that ∑
k

c∗kdk = 1
2π

∫
f∗(x)g(x) dx

This is the Plancherel Equation, which leads into Parseval’s theorem, which we have seen before.

Let us look at the space where the range of x is (−∞,∞). This should imply Fourier Transforms,
rather than Fourier series. We have that

〈f |g〉 =
∫ ∞
−∞

f∗(x)g(x) dx

And an arbitrary vector is written as

|f〉 =
∫
f(x) |x〉 dx

If we take the inner product of two of these arbitrary vectors:

〈f |g〉 =
∫∫

f∗(x)g(x) 〈x|y〉 dx dy

That inner product is δ(x− y): ∫ ∞
−∞

f∗(x)g(x) dx

In the Fourier basis:
|k〉 =

∫ ∞
−∞

eikx |x〉 dx

Taking the inner product:

〈p|k〉 =
∫∫

e−ipy+ikx 〈x|y〉 dx dy =
∫
e−i(k−p)x dx = 2πδ(p− k)
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Let’s try to compute the coefficients in the Fourier basis:

〈x|f〉 = f(x)

〈p|f〉 = 〈p|
∫ ∞
−∞

F (k) |k〉 dk〉 =
∫
F (k) 〈p|k〉 dk = 2π

∫
δ(p− k)F (k)

= 2πF (p)

Thus
F (p) = 1

2π 〈p|f〉 = 1
2π

∫ ∞
−∞

e−ipxf(x) dx

We see that this is exactly what we said for the Fourier transform.

In this Fourier basis, lets compute the inner product:

|f〉 =
∫
F (k) |k〉 dk

〈f |g〉 =
∫
F ∗(k) 〈k| dk

∫
G(p) |p〉 dp

=
∫∫

F ∗(k)G(p) 〈k|p〉 = 2π
∫
F ∗(k)G(k) dk

We can then set this equal to the other definition of writing the inner product:

〈f |g〉 =
∫
f∗(x)g(x) dx

This once again gives us Plancherel’s Theorem/Equation.

If we have a space of functions with domain (−1, 1) that are complex valued:

〈f |g〉 =
∫ 1

−1
f∗(x)g(x) dx

|f〉 =
∑
l

al |l〉

Where
|l〉 =

∫ 1

−1
Pl(x) |x〉 dx

And
〈l|m〉 = 2

2l + 1δlm

Computing the inner product of two arbitrary functions:

〈j|f〉 =
∑
l

al 〈j|l〉 =
∑
l

al
2

2l + 1δjl = 2aj
2j + 1

Using the other definition:
2aj

2j + 1 =
∫ 1

−1
P ∗j (x)f(x) dx
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So when should we use the Fourier Basis and when should we use Pl. They’re both complete, and
orthogonal, and both decompose a function into sets of components. How do we choose which one
to use?

We know that 〈u|v〉 is an inner product, but what is |v〉 〈u|? If we pattern match using linear
algebra, if we have

(|v〉 〈u|) |w〉
This is similar to a matrix acting on a vector in linear algebra. We know that given an orthonormal
basis {|i〉}, for any two basis vectors, 〈i|j〉 = δij . For any arbitrary matrix M , the matrix element
Mij is related to |i〉 and |j〉. To get the value of Mij , we can do

〈i|M |j〉

We can write the matrix generally:
M =

∑
ij

|i〉Mij |j〉

We can apply this matrix against a ket:

M |17〉 =
∑
ij

|i〉Mij 〈j|17〉 =
∑
ij

|i〉Mijδj,17

=
∑
i

|i〉Mi,17

What about the claim of completeness for these bases? A basis {|i〉} is complete if every vector can
be written

|v〉 =
∑
i

ci |i〉

We have shown that
〈j|v〉 = 〈j|

∑
i

ci|i〉 =
∑
i

ci 〈j|i〉 =
∑
i

ciδij = cj

Thus we have that cj = 〈j|v〉, and we can then write out |v〉:

|v〉 =
∑
i

〈i|v〉 |i〉 =
∑
i

|i〉 〈i|v〉 =
Ç∑

i

|i〉 〈i|
å
|v〉

This tells us that
|v〉 = M |v〉

If this is true for all |v〉, then M must be the identity, and thus

I =
∑
i

|i〉 〈i|

We can look at the derivative operator:

D =
∫ ∞
−∞
|x〉 d

dx
〈x| dx

Lets act this on the vector f :

D |f〉 =
∫
dx |x〉 d

dx
〈x|
∫
dy f(y) |y〉 =

∫
dx |x〉 d

dx

∫
dy 〈x|y〉

=
∫
dx |x〉 d

dx

∫
dy f(y)δ(x− y) =

∫
dx |x〉 d

dx
f(x)
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4.4 Eigenvalue Problem
If we are given a matrix M , the goal is to find vectors and corresponding numbers such that

M~v = λ~v

~v is an eigenvector and λ is an eigenvalue. The set of ~vs forms a complete basis:

~u =
∑
n

cn~vn

We can write this with kets:
M |v〉 = λ |v〉

And we have that
〈x|M |v〉 = λ 〈x|v〉

5 Partial Differential Equations
ODEs have 1 independent variable, while PDEs have more than 1. The order of the equation is the
highest number of derivatives in any term. For example, the equation

∂2
xT = 1

α2∂tT

is a second order PDE.

An equation that is linear can be written in terms of an operator acting on a function:

Ly = f

A solution to a PDE is any function that when plugged in as the dependent variable gives an
equality. Remember that the independent variables are inputs, things we take for granted, such
as x, y, z, and t. Dependent variables are output, properties/behavior of the system of interest,
such as temperature, pressure, deformation, or other possible quantities. These are all fields. Fields
are physical quantities that have values for every combination of independent variables that we’re
interested in. For example, we could have a rod, whose temperature would be some function T (x, t).
If we specify the position and the time, we can always assign a value for the temperature at that
time and place.

We have other types of fields, such as force fields:

~F (~r, t)

Where the force is dependent on the position and time. Note that the force is a vector, so this is a
vector field. The temperature case is a scalar field, where the quantity returned by the field is just a
scalar. Pressure is another example of a scalar field, where the pressure at a given point and time is
just a single number. Other examples of vector fields are EM fields, like the electric field or the
magnetic field.

There are other fields too, such as spinors (used in QFT) and tensors (used in GR).

How do we solve these PDEs? One method is to have experience, and just guess solutions via
experience. Another possible method is to ask a computer. Then there are special techniques for
linear PDEs.
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Linear ODEs were good because they obeyed the superposition rule, where if we found two solutions,
we could just add them together to get a solution. For PDEs, we will find a large number of solutions
that are linearly independent (orthogonal). If we can find a good basis, then we can express every
solution in terms of that basis.

Let’s see some examples.

Laplace’s equation:
∇2u = 0

Helmholtz’s Equation:
∇2u+ k2u = 0

The Wave equation:
∇2u = 1

v2∂
2
t u

The Diffusion/Heat equation:
∇2u = 1

α2∂tu

The Schrodinger equation:
∇2ψ + V ψ = i∂tψ

Note that all of these equations can be rewritten as Lu = 0. These are all homogeneous equations.
We also have Poisson’s equation, which is inhomogeneous:

∇2u = f(x, y, z)

Imagine a string vibrating in 1 direction as a function of time:

∂2
xu = 1

v2∂
2
t u

u is a function of both x and t. Let us separate variables to solve this wave equation. We say that

u(x, t) = X(x)T (t)

Plugging this into the wave equation:

T (t)∂2
xX(x) = 1

v2X(x)∂2
t T (t)

Now we divide by XT :
1
X
∂2
XX = 1

v2
1
T
∂2
t T

The left side is a function of x only. The right side is a function of t only. Both sides of this must
be the same constant:

1
X
∂2
xX = λ = 1

v2T
∂2
t T

We can now solve the first equation:
∂2
xX = λX

And solve the second equation:
∂2
t T = v2λT
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From these, and the fact that we want oscillatory solutions, we get that

X = c+e
ikx + c−e

−ikx T = d+e
ikvt + de−ikvt

We now need to multiply the solutions together to get u:

XkTk = c+d+e
ik(x+vt) + c+d−e

ik(x−vt) + c−d+e
−ikx(x−vt) + c−d−e

−ik(x+vt)

We see that we can group these into terms with x− vt and those with x+ vt, which gives us the
right and left moving waves, respectively. Which values of k are allowed? We can use any value of k
that we want, whether it be negative, positive, or 0. Thus we have the general solution of the wave
equation, summing over all possible allowed values of k:

u =
∫ ∞
−∞

dk
î
L(k)eik(x+vt) +R(k)eik(x−vt)

ó
We haven’t left out the negative terms because we’re integrating from −∞.

Does this really solve the wave equation? One way to check is to take the derivatives:

∂2
xu =

∫
dk (ik)2

î
L(k)eik(x+vt) +R(k)eik(x−vt)

ó
∂2
t u =

∫
dk (ikv)2

î
L(k)eik(x+vt) +R(k)eik(x−vt)

ó
= v2∂2

xu

In terms of initial conditions, we need to specify u(x, 0), and ∂tu(x, 0).

Why did we pick λ = −k2 in the second equation? This is because we can’t have exponentially
growing functions, due to physical limitations of the situation. This gives us the boundary conditions:

u(x = ±∞) 6=∞ u(t = ±∞) 6=∞

There are other boundary conditions as well. The Dirichlet Boundary Conditions (function equal to
certain value at certain place):

u(a) = c

The Neumann Boundary Condition (specify derivative at a particular place):

u′(a) = 0

Periodic Boundary Conditions (going some period away will loop the function):

u(x+ 2π) = u(x)

Consider a 2π-periodic String. We have the boundary condition u(x, t) = u(x+ 2π, t):

X(x+ 2π) = X(x)

Thus we have that eik(x+2π) = eikx, which gets us that e2πik = 1. Ths tells us that k must be an
integer. When we go to construct the generic function, we can’t use an integral, and instead must
use an infinite sum instead:

u =
∞∑

k=−∞
lke

ik(x+vt) + rke
ik(x−vt)
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What if we clamp down the string at x = 0 and x = π. Instead of using eikx, we can use sin and cos
instead (can’t use the exponential because its never 0):

u =
∞∑

k=−∞
bk sin(kx)eikvt

Where the sin is from the position ODE and the exponential is from the time ODE. We don’t have
another term because we can split this sum:

u(x, t) =
∞∑
k=1

sin(kx)bkeikvt +
∞∑
k=1

sin(−kx)b−ke−ikvt

Now using the fact that sine is odd, and combining the two sums:

=
∞∑
k=1

sin(kx)
Ä
bke

ikvt − b−ke−ikvt
ä

And we see that we have the expected solution.

Let’s take the example of a pipe open at x = 0 and x = π:

∂2
xp = 1

v2∂
2
t p

We can solve this with the same construction (4 functions, the plus/minuses are independent of
each other):

p = e±ikxe±ikvt

We know that ∂xp(0, t) = 0 = ∂xp(π, t) so we need a solution that obeys those. Taking the x
derivative of p:

∂xp ∝ ±ike±ikx

This is never 0, but we know that ∂x(cos(kx)) = 0 when x = 0, so this implies that cos(kx) is the
spatial part of the solution:

p ∼ cos(kx)e±ikvt

Looking at the second boundary condition:

∂xp(π, t) = −k sin(kπ)e±ikvt = 0

Thus we need k ∈ Z. The choices for k are called the spectrum. This gives the solution:

p = a0
2 +

∑
cos(kx)(akeikvt + a−ke

−ikvt)

In general, if we have a PDE that is linear and homogeneous (Lu = 0), we can find a basis via
separation of variables, giving us separation constants. We can then apply the boundary conditions,
which takes the basis and removes certain basis vectors from our combination. The solution is just
the sum over the allowed separation constants of the basis functions for the separation constants,
with some arbitrary coefficients.
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5.1 Laplace’s Equation
Laplace’s equation is

∇2u = 0

Where ∇2, known as the Laplacian is defined as

∇2 = ∂2
x + ∂2

y + ∂2
z

in 3 dimensions. In n dimensions:
∇2 =

n∑
i=1

∂2
xi

In two dimensions, we can use separation of variables:

u = X(x)Y (y)

Now inserting this into the equation:

(∂2
x + ∂2

y)XY = Y ∂2
xX +X∂2

yY = 0

∂2
xX

X
+
∂2
yY

Y
= 0

The first piece only depends on x, and the second only depends on y, and thus they must be
constants:

∂2
xX = λX ∂2

yY = −λY

If we want periodic solutions in X, we would require exponential growth in Y , and vice versa.

What is Laplace’s equation? Recall that

∂2
xf = lim

h→0

f(x+ h)− 2f(x) + f(x− h)
h2

If this is 0, then
f(x+ h)− 2f(x) + f(x− h) = 0

And thus
f(x) = f(x+ h) + f(x− h)

2
We see that values at x equal the average of the surrounding values. If we worked it out for two
dimensions:

∂2
xf + ∂2

yf = 0→ f(x, y) = f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)
4

We see that the intuition of an average still holds. The functions that satisfy this equation are
functions that can be made via deforming a rubber sheet. They need to be smooth and elastic.

Helmholtz’s equation is given by
∇2u+ k2u = 0

One can think of Laplace’s equation as a special case of this equation. This shows up when studying
the wave equation:

∇2u− 1
v2∂

2
t u
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∇2u− 1
α2∂tu

If we say that u = X(x, y, z)T (t), we find that T (t) is an exponential, and we will find that we cna
separate out the time dependent portion.

Picking god coordinate systems is also an issue. Suppose we have a cylindrical system. In this case,
the boundary conditions are best expressed in cylindrical coordinates. In cylindrical, we use r, φ,
and z:

r2 = x2 + y2 tanφ = y

x
z = z

The Laplacian in cylindrical coordinates is not equal to the natural expectation:

∇2 6= ∂2
r + ∂2

φ + ∂2
z

The z partial does match, so that’s not an issue, but the other two need to match up. Using the
chain rule:

∂2
xf = ∂x(∂rf∂xr + ∂φ∂xφ)

Now using the product rule and the chain rule:

= (∂2
rf(∂xr)2 + ∂rf∂

2
xr + ∂2

φf(∂xφ)2 + ∂φf∂
2
xφ)

We could then use the transformations. If we do it all out, we find that

∇2u =
Å1
r
DrrDr + 1

r2D
2
φ +D2z

ã
u

If we do separation of variables on
−k2u = ∇2u

in cylindrical, we eventually get
λzZ = ∂2

zZ

λφφ = ∂2
φφ

−λrR = ∂2
rR+ 1

r
∂rR+ λφ

r2 R

λr = λz + k2

Also note that u(φ) = u(φ+ 2π) (since it wraps around), and we say that λφ = −m2. The solutions
to these conditions are known as Bessel functions. These functions lead to Hankel functions.
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