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1 Introduction
This course is about the physics of vibrations and waves. We don’t learn any new laws of physics,
we simply build off of what we already know. The waves we talk about are related to mechanical
waves and electromagnetic waves. We develop methods of applying Newton’s Laws and Maxwell’s
equations to oscillations. We then talk about how vibrations being transmitted through space create
waves.

We start with mechanical oscillation, including springs, pendulums, and coupled oscillators. We
also talk about electromagnetic oscillators, such as inductor and capacitor circuits (LC circuits)
and circuits including resistors (RLC circuits). We then transition to mechanical waves, such as
sound waves. We then transition to EM waves, like waves in cables, waves in space, and optics
(interference, diffraction).

In this course, we will also learn to apply mathematical methods such as methods for solving linear
diffeqs, complex algebra, Taylor expansions, exponential functions (ex), and Fourier series.

2 Simple Harmonic Motion
2.1 Equation of Motion

The simplest oscillator is a mass and a spring. We have a mass m and a spring with some spring
constant s (sometimes also shown as k). We assume that there is no friction, and we displace the
mass from its equilibrium state some distance x. The spring wants to restore the system back to
equilibrium, so it exerts a restoring force:

F = −sx

From here, we use Newton’s Law, F = ma:

m
d2x

dt2
= −sx

Rewriting, we get the core equation of all SHM:

m
d2x

dt2
+ sx = 0

This is a linear differential equation. This is linear because there is no higher order of x. We use
this property as we move along. This equation is known as the equation of motion. Our job is now
to solve this to find x as a function of time. Note that when we say that the restoring force is linear,
this only occurs for small displacements, as the spring will behave differently if we for example, pull
the spring out very far. We are also ignoring the mass of the spring, which is impossible in the real
world.

2.2 Solution
To solve this equation, we can guess a solution, x = A cosωt. If we do this:

dx

dt
= −Aω sinωt

d2x

dt
= −Aω2 cosωt
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Plugging these in, we get that

−Amω2 cosωt+ sA cosωt = 0

This gives us that

ω =
…

s

m

ω is known as the angular frequency, and is completely independent of the amplitude of the
oscillation (based on x). Our solution is a periodic function:

x = A cosωt = A cos(ωt+ ωT )

If ωT = 2π, we see that we are back to where we started. T = 2π
ω is the period of oscillations.

Via dimensional analysis, we know that T is in units of time, and ω has units of inverse seconds.
Rewriting in terms of ω:

ω = 2π
T

= 2π 1
T

= 2πν

Where ν = 1
T , and is known as the frequency (Note that this is different from angular frequency).

This is the number of times the system oscillates per second. Angular frequency is just 2π times
this.

We also notice that x = B sinωt is also a solution to the diffeq. This means that we can construct a
general solution, a linear combination of the two solutions that we have:

x = A cosωt+B sinωt

Where A and B are any arbitrary constants. These constants can be determined when we take into
account the initial conditions of the system, such as initial position and velocity (x0 and ẋ0). For
example, if we know that at t = 0, x = 0. We can plug in t = 0 into x(t):

x(0) = A+B(0) = 0

This tells us that in this case, A = 0, so our equation will be

x(t) = B sinωt

To find what B is, we take the derivative to get ẋ(t):

ẋ(t) = Bω cosωt

Plugging in the fact that at t = 0, ẋ = v0:

B = v0
ω

This would give us the final equation for this specific case:

x = v0
ω

sinωt

We can also replace A and B with something else:

A = a sinφ B = a cosφ
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Note that we can define them to be whatever we want. Plugging these new values in:

x = a sinφ cosωt+ a cosφ sinωt

= a(sinφ cosωt+ cosφ sinωt)

Using angle addition identities:
x = a sin(ωt+ φ)

Note that this depends on the arbitrary choice of how we represent A and B, but it gives us an
equation with the same quantities, and only one trig function, with an additional term φ, known as
the phase shift. (ωt+ φ) is known as the phase of the oscillation. a is known as the amplitude
of the oscillation.

Note that the phase is dependent on where the system starts off, as the phase offsets the sinusoid,
which we can see if we look at t = 0:

x(0) = a sinφ

We see that φ determines where the function reaches its maxima, and tyhe function has the same
amplitude a.

Lets look at what the velocity, ẋ(t) looks like, and what the acceleration ẍ(t) looks like:

ẋ = aω cos(ωt+ φ)

ẍ = −aω2 sin(ωt+ φ)

We see that ẋ is 90 degrees out of phase with x, due to the difference between sine and cosine, and
we can see that the acceleration is a whole 180 degrees out of phase, due to the negative sign.

2.3 Energy in the System
Let’s now look at the energy in this system. We have two different types of energy in the system,
potential and kinetic. To calulate the potential, we look at the force we have, F = −sx. When we
displace the spring, we are doing work against the restoring force, which is the potential energy:

PE = −
∫ x

0
−sx = 1

2sx
2

To find the kinetic energy, we just use the regular equation:

KE = 1
2mẋ

2

We know that ẋ = aω cos(ωt + φ), so we can plug it in. This leaves us with an expression for
potential energy:

PE = 1
2sa

2 sin2(ωt+ φ)

Using the fact that ω2 = s
m :

PE = 1
2mω

2a2 sin2(ωt+ φ)

and an expression for kinetic energy:

KE = 1
2mω

2a2 cos2(ωt+ φ)
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Notice that both of them are oscillating, but if we look at the sum of the expressions, the sum of
the total energy in the system, we see that they sum to a constant:

KE + PE = 1
2mω

2a2

This tells us exactly what we wanted, that the energy in the system is conserved.

2.4 Potential Functions
We just showed that PE, sometimes also written as V , is equal to 1

2mω
2x2. We know that F = −dV

dx ,
which is just −sx, or −mω2x. Taking the second derivative:

d2V

dx2 = mω2

This tells us that ω2 = 1
m
d2V
dx2 . Why do we care about this?

What if we had a problem where we knew the potential, but not the force? If we plotted the potential
against x and the graph was periodic, and we placed a mass in a trough, the mass would oscillate
back and forth. If we have some V (x), we have some areas where there are local equilibriums, such
as the bottom of a trough. We look at the Taylor expansion of V (x):

V (x) = V (x0) + V̇ (x0)(x− x0) + V̈ (x0)(x− x0)2

2! + . . .

At equilibrium (a maxima), the value of V̇ (x0) will be 0. This means that we can approximate:

V (x)− V (x0) ≈ V̈ (x0)(x− x0)2

2
This means that near all minima, we can have an oscillation that is related to the second derivative:

ω2 = 1
m
V̈ (x0)

3 Damped Oscillations
Damped oscillations have an additional force, which isn’t linear, and that opposes the motion:

FD = −rẋ

where r is a constant, similar to s. Using F = ma, we can get the diffeq for the situation:

mẍ = −rẋ− sx

mẍ+ rẋ+ sx = 0
This is more complicated than SHM, but is still a linear diffeq. The simple example of this is a
mass on a spring with friction. Note that in most physical cases, it is proportional to v, but in some
cases you could see proportionality to v2. The task is to find a solution to this diffeq. Looking at
circuits, this is a LRC circuit:

L
dI

dt
+ IR+ q

c
= 0

Lq̈ +Rq̇ + q

c
= 0
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3.1 Extension of Math Toolkit (Complex Numbers)
3.1.1 Basics of Complex Numbers

We start off by introducing complex variables, which starts with the definition of i:

i =
√
−1

We can construct a complex number:
z = a+ bi

We can do algebra and geometry with these. For example, each real number represents a point on
an axis, whereas a complex number can be represent a dot on a plane, or a vector from the origin
to the point. If we take the magnitude of that vector, we have a definition of the magnitude of a
complex number:

|z| =
√
a2 + b2

Using this, we can rewrite the complex numbers by using the angle between the origin and the
vector:

z = |z|(cos θ + i sin θ)
We also have an expression for the tangent of the angle:

tan θ = b

a

Let’s do some algebra with these complex numbers. Take the following complex numbers:

z1 = a1 + b1i z2 = a2 + b2i

z1 + z2 = (a1 + a2) + i(b1 + b2)
The same logic holds for subtraction. For multiplication, we just FOIL:

z1z2 = a1a2 + ia1b2 + ia2b1 + i2b1b2 = a1a2 − b1b2 + i(a1b2 + a2b1)

For division:
z1
z2

= z1 + ib1
a2 + ib2

To do this, we have to define the complex conjugate:

z∗ = a− ib

Note that
zz∗ = a2 + b2

so |z| =
√
zz∗. Moving back to division, multiplying both the top and bottom by the complex

conjugate:
(a1 + ib1)(a2 − ib2)
(a2 + ib2)(a2 − ib2)

= (a1 + ib1)(a2 − ib2)
a2

2 + b22
Another feature that is nice to know:

z = a+ ib z∗ = a− ib

Re(z) = a = z + z∗

z

Im(z) = b = z − z∗

zi
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3.1.2 Natural Exponential Function

The natural exponential function is ex. Remember that the definition of e is

e =
∞∑
n=0

1
n!

And we can Taylor expand ex:

ex = 1 + x+ x2

2! + x3

3! + . . .

The most beautiful part of ex is the property that the derivative of ex is itself:

dex

dx
= ex

3.1.3 Complex Exponential Function

eix = 1 + ix+ i2x2

2! + . . .

Separating the even and odd terms:

eix = (1− x2

2! + x4

4! + . . . ) + i(x− x3

3! + x5

5! + . . . )

We see that this is two infinite series that look familiar, the first being the Taylor expansion for cos,
and the second being the Taylor expansion for sin:

eix = cosx+ i sin x

Feynman called this the most remarkable formula in math. Looking at e−ix:

e−ix = cosx− i sin x

From these, we can write definitions of the trig functions:

cosx = eix + e−ix

2

sin x = eix − e−ix

2i
We can then have a little bit of fun:

eiπ = cosπ + i sin π = −1

Rewriting the left side:
(eiπ/2)2 = −1

Taking the square root:
eiπ/2 =

√
−1 = i

This tells us that: √
i = eiπ/4 = cos(π/4) + i sin(π/4)
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= 1 + i√
2

Note that we can also rewrite any arbitrary complex number:

z = a+ ib = |z|(cos θ + i sin θ) = |z|eiθ

z = |z|eiθ

We can now redefine the multiplication of complex numbers:

z1 = |z1|eiθ1 z2 = |z2|eiθ2

z1z2 = |z1||z2|ei(θ1+θ2)

Likewise, division:
z1
z2

= |z1|
|z2|

ei(θ1−θ2)

Let’s look at the logarithm of an arbitrary complex number:

ln z = ln(|z|eiθ) = ln |z|+ i(θ)

Note that this isn’t completely correct, because if we add 2π to θ, the result is the same, so the
correct definition is:

ln z = ln |z|+ i(θ + 2nπ)

3.1.4 Roots of Unity

Lets look at the cube roots of 1:
1

1
3 = (ei2nπ)

1
3 = ei

2nπ
3

3.1.5 SHM Using Complex Numbers

Let’s move back to the SHM equation:

mẍ+ sx = 0

We can claim that a possible solution is

x = Aeiωt

Plugging this in:
ẋ = Aiωeiωt

ẍ = Ai2ω2eiωt = −Aω2eiωt

−mAω2eiωt +Aseiωt = 0

−mω2 + s = 0

ω2 = s

m

We can also look at x = Be−iωt, and we see that this is also a solution, giving us a general solution:

x = Aeiωt +Be−iωt
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Note that x has to be real, so to get the real solution, we can take the real portion of x, or we can
manipulate the solution to become a real number, by choosing values for A and B:

A = B∗ = C

2ie
iφ

Plugging these in:
X = C

2ie
iφeiωt − C

2ie
−iφe−iωt

Doing out the math, we eventually get

x = C sin(ωt+ φ)

Note that we can get the different possible solutions by choosing different values for A and B.

3.1.6 Beats

Let’s say we have a system that is oscillating under 2 different vibrations:

x1 = A1e
i(ωt+φ1) x2 = A2e

i(ωt+φ2)

x = x1 + x2 = A1e
i(ωt+φ1) +A2e

i(ωt+φ2)

= ei(ωt+φ1)(A1 +A2e
i(φ2−φ1))

We can see that the things in the parentheses is the amplitude of the oscillation. lets look at another
case:

x1 = Aeiω1t x2 = Aeiω2t

x = A(eiω1t + eiω2t)

We can rewrite ω1:
ω1 = (ω1 + ω2)

2 + ω1 − ω2
2

and also rewrite ω2:
ω2 = ω1 + ω2

2 − ω1 − ω2
2

We can then rewrite x:
x = Ae

i(ω1+ω2)t
2 (ei(ω1−ω2)t + e−i(ω1−ω2)t)

This is just:
x = 2Aei(ω1+ω2)t cos(ω1 − ω2)t

Taking just the real part of this:

x = 2A cos((ω1 + ω2)t
2 ) cos (ω1 − ω2)t

2

This is what we call beats, where the system is oscillating with two frequencies, where we see a
rapid oscillation enveloped with a slow oscillation.
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3.2 Solving Damped Oscillation
Moving back to the damped oscillation, we can try a solution:

x = ceαt

Which we can plug into the equation:
ẋ = cαeαt ẍ = cα2eαt

mcα2eαt + crαeαt + sceαt = 0
mα2 + rα+ s = 0

This is a quadratic, which we can solve:

α = −r2m ±

 
r2

4m2 −
s

m

3.3 Underdamped Oscillation
Notice that we see s

m is here (ω2
0). Let’s look at some interesting cases. One case (Underdamped

Oscillation) is when
r2

4m2 <
s

m
Then we see that the expression underneath the square root is negative, so we will have a complex
solution:  

r2

4m2 −
s

m
= (ω2

0 −
r2

4m2 )
1
2 i

We call this value on the right ω:

ω = (ω2
0 −

r2

4m2 )
1
2

The two values of α will be
α1 = −1

2m + iω α2 = −1
2m − iω

Plugging these values back into x:
x1 = c1e

−r
2m teiωt

x2 = c2e
−r
2m te−iωt

We can see that ω is the angular frequency of a damped oscillation, and is different from ω0. If we
take the case that there is no damping, we see that ω = ω0. Our general solution is

x = x1 + x2 = −r2mt(c1e
iωt + c2e

−iωt)

We can then say that c1 = c∗2 = c
2ie

iφ (like what we did previously), we are left with

x = ce−
r

2m t sin(ωt+ φ)

As time passes in this damped oscillation, we see that the exponential term gets smaller over time, so
the oscillation runs down (as we would expect when talking about a real world pendulum). Thinking
about the energy in the system, we have some amount of energy in the system in the beginning, and
as the oscillation decays, the energy also decays based on E = 1

2kx
2 + 1

2mẋ
2. We see that energy

will always be proportional to the amplitude squared, so as the amplitude decays:

A = Ce
−r
2m t

E = E0e
−r
m
t
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3.4 Oscillation Quantities
We have a quantity called the ’relaxation time’, which is the amount of time it takes for the energy
to drop by 1

e :
τ = m

r

Another quantity we have is the ’quality factor’, the change in the phase of the oscillation for
∆t = τ :

Q = ωm

r

We had that
ω2 = ω2

0 −
r2

4m2

In the case that
r2

4m2 � ω2
0

ω ≈ ω0

Q = ωm

r
≈ ω0m

r

x = ce−
r

2m t sin(ωt+ φ) ≈ ce
−ω0t
wQ sin(ωt+ φ)

E = −c2e
−ω0t
Q

We see that Q tells us that if Q is large, damping is very small, and the energy loss is also small. If
ω0t
Q = 1, Q measures the change in the phase for the simple oscillation.

If we rewrite the equations of motion:

ẍ+ ω0
Q
ẋ+ ω2

0x = 0

This is interesting in cases where we have very large Q, where we can ignore the second term entirely.
We can also show that

Q

sπ
= E

−∆E
The right side is the energy loss in a period of oscillation (Sec. 2.4 P&R).

3.5 Overdamped Systems
Moving back to calculating α, we have the case where

r2

4m2 > ω2
0

This is Overdamping. We see that both α1 and α2 are real, so we can write the solution out:

x = c1e
α1t + c2e

α2t

We have no oscillation occurring. Let’s analyze the numbers to figure out what happens. We see
that α1 and α2 are both negative. Let’s redefine α1 and α2 to be −α1 and α2:

α1 = r

2m + ( r2

4m2 − ω
2
0)

1
2
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α2 = r

2m − ( r2

4m2 − ω
2
0)

1
2

x = c1e
−α1t + c2e

−α2t

This form makes it easier to see what’s going on. We can see that both exponentials are decaying,
and α1 is larger than α2, by looking at cases where r2

4m2 � ω2
0. When α1 > α2, and we displace our

spring A, we see that the first term will decay rapidly, and the second term will decay slower. This
means that as time passes, the second term will dominate.

3.6 Critical Damping
Critical damping is the case where

r2

4m2 = ω2
0

In this case, α1 = α2 = r
2m = α, we are left with:

x1 = ce−αt

We have a second order diffeq, so we need another solution, whichis

x2 = c2te
−αt

To demonstrate that this is also a solution, we take the case when α1 → α2:

x = c1e
−α1t + c2e

−α2t

As α1 − α2 → 0:
x = e−α1t(c1 + c2e

−(α2−α1)t)

We see that the interior exponential is approximately a constant:

x ≈ e−αt(c1 + c2(−α2 + α1)t)

Critically damped systems essentially have a faster falloff compared to overdamped systems, because

r

2m >
ω2

0m

r

In general, the critical damping solution is of the form:

x(t) = (A+Bt)e−ωt

4 Forced Harmonic Oscillation
We now want to introduce a driving force to our simple mass on a spring system. If we take x to
be the left/right axis, we can look at the forces on the mass. The first is the restoring force of the
spring:

F = −sx

We also have the dissipative/damping force:

F = −sx− rdx
dt
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And we now have a driving force:

F = −sx− rdx
dt

+ F cos(ωt) = ma

Rewriting the system:

m
d2x

dt2
+ r

dx

dt
+ sx = F cos(ωt)

Note that the ω we are using here is different from ω0 =
√

s
m (fundamental frequency of the system,

also known as the normal mode). We want to see how this system behaves, and how to analyze this
system. Let’s now make an attempt to solve the problem.

4.1 Solving the Driven Oscillator

m
d2x

dt2
+ r

dx

dt
+ sx = F cos(ωt)

We start by using complex algebra to change the cosine into an exponential:

F cos(ωt) = Re(Feiωt)

However, we disregard taking the real portion until after we’ve solved for x, and we just use the
entire exponential:

m
d2x

dt2
+ r

dx

dt
+ sx = Feiωt

To solve this diffeq, we assume x = Aeiωt. We can then put this into the equation:

ẋ = iωAeiωt

ẍ = −ω2Aeiωt

Inserting these into the equation:

m(−ω2)Aeiωt + r(iω)Aeiωt + sAeiωt = Feiωt

We can cancel out the exponentials:

−mAω2 + irAω + sA = F

Doing some algebra and substituting in ω2
0 = s

m and defining γ = r
m :

A = F0
m

1
(ω2

0 − ω2) + iωγ

However, this isn’t satisfactory, since the want a real number for the amplitude. Currently, A is
complex valued:

A = |A|eiφ

We can multiply by the complex conjugate of the denominator:

A = F0
m

(ω2
0 − ω2)− iωγ

(ω2
0 − ω2)2 + ω2γ2
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We get that |A|2 = AA∗, and we see that this is real valued:

|A|2 = F 2
0

m2
1

(ω2
0 − ω2)2 + ω2γ2

The textbook factors out a −i from A:

A = −iF0
m

ωγ + i(ω2
0 − ω2)

(ω2
0 − ω2) + ω2γ2

From this we can get something that relates to the phase:

tanφ = ω2 − ω2
0

ωγ

This is very important, as resonances happen everywhere, in mechanical systems, atomic physics,
particle physics, and many other systems.

If we look at just |A|:
|A| = F0

m

1√
(ω2

0 − ω2)2 + ω2γ2

We can break this down into different conditions. If we have ω = 0, we can get the amplitude:

F0
m

1
ω2

0
= F0
m

1
s
m

= F0
s

In the case where ω →∞, the amplitude approaches 0.

In the case where ω = ω0:
A = F0

m

1
ω0γ

= F0
m

m

ω0r

Recall the definition Q = ω0m
r , and using this we can rewrite A:

A = F

ω2
0m

Q = F

s
Q

This is what we call resonance. If we graph A, we can see that it is not symmetric, and it peaks at
ω = ω0, and the larger the value of Q, the higher the peak.

If we look at our solution, where we express A in terms of its magnitude and its phase:

x = −iF
m

eiφ√
(ω2

0 − ω2)2 + ω2γ2
eiωt

We want to take the real part of this, so we merge the exponentials and expand into sines and
cosines, leaving us with:

Re(x) = |A| sin(ωt− φ)

If we compare the relative phase between x and the driving force, we see that at ω = ω0 (resonance),
the phase difference between the displacement and the driving force is exactly π

2 .
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4.2 Energy of Driven Oscillation
How does the energy of this system behave as a function of ω? We need to know that

E ∝ |A|2

This tells us that
E ∝ (F0

m
)2 1

(ω2
0 − ω2) + ω2γ2

If we had to draw the energy as a function of frequency, we would once again see that it peaks at
ω = ω0, and goes to 0 at ∞. The fact that the energy peaks at the natural frequency means that
the most efficient way of inputting energy into the system is at ω = ω0. We now want to ask where
this energy goes. The driving energy inputs energy, and the dissipative force removes energy from
the system. This means that at the natural frequency, we have the maximum dissipation of energy,
as well as the maximum amount of energy input (because the net energy change has to be 0).

We have shown that the driven oscillator has a solution that takes the form Aeiωt, and that A is a
complex number with some amplitude and phase. We can get the amplitude via |A|2 = AA∗, and
we see that it depends on γ and the frequency ω. We also know that since A is complex, it has a
phase, which we computed and we showed that the phase can be written:

tanφ = ω2 − ω2
0

ωγ

We also showed that we can get the real solution by taking the real portion of the solution we had:

Re(x) = |A| sin(ωt− φ)

We also showed that if we had a static force, A = F0
s . We also showed that if we used the definition

of quality Q, we see that we can rewrite A:

A = F0
ω2

0m
Q

We then showed that if we plotted the amplitude as a function of frequency, we see that it peaked
at ω = ω0, and the higher the Q, the higher the peak.

We then also discovered that we have a phase difference between the force F0 cos(ωt), and the
displacement A sin(ωt− φ) (which comes from the fact that we have a cosine and a sine, which are
offphase by π

2 ) of ∆φ = φ+ π
2 . We can see that at resonance, the phase difference between the force

and the displacement is π
2 . These apply to almost every resonance that we will see in physics.

We then looked at the energy, and we saw that E ∝ |A|2. We once again noticed that this peaked
at ω = ω0.

4.3 Resonance Peaks
We now want to know how wide the peak is. We know that the peak is centered at ω0, the natural
frequency, and we define the Full Width Half Maximum (FWHM). This means we are looking for
the frequency at which the energy is at 1/2 of the energy at the peak. The energy is proportional to

F 2
0

m2
1

ω2γ2
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And we claim that FWHM occurs when

(ω2
0 − ω2)2 = ω2γ2

This gives us the position of the half peaks are at

ω2
0 − ω2 = ±ωγ

This gives us our two points, one with the +, and one with the −. If we do some algebra, we find
that

ω2 − ω1 = γ = r

m

This tells us that the width of the peak is given by γ. This makes sense, since the smaller the r, the
narrower the peak, and also Q increases, which gives us a narrow tall peak, exactly what we expect.

If we call ω2 − ω1 ∆ω, we can rewrite Q:

Q = ω0
∆ω

We can see that we can define any resonance peak just given the peak frequency ω0, and the Q
value at the peak.

4.4 Energy in the System
4.4.1 Removing the Driving Force

What happens if we turn off the driving force? Let’s assume that we have an underdamped system.
We can see that we have some stored energy E0. If we look at this as a function of time, we can see
that it decays like

E = E0e
− r
m
t

= E0e
−γt

We see that it is determined by the width of the resonance.

4.4.2 Power Delivered/Dissipated

Our system has 3 different forces, with the dissipative force removing energy from the system, the
driving force increasing the energy in the system, and the restoring force not changing the energy in
the system. If we have a circuit, the rate of the input power from the driving force has to be equal
to the energy being removed by the dissipative force if we want to have an oscillation. Let’s get the
instantaneous power being added to the system:

PI = Fv

= F0 cos(ωt)dx
dt

= F0Aω cos(ωt) cos(ωt− φ)

We can break the last term up into its parts:

= ωF0A cosωt(cosωt cosφ+ sinωt sinφ)
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However, we’re interested in the average power P̄ (also seen as Pavg), on the scale of 1 single period.

Pavg = 1
T

∫ T

0
PI dt

= F0Aω cosφ
T

∫ T

0
cos2 ωt dt+ 1

T

∫ T

0
cosωt sinωt dt

We can see that the second term will always be 0, and the first integral is equal to 1
2 , giving us

P̄ = 1
2F0Aω cosφ

We know that tanφ = ω2−ω2
0

γω , and we can plug this in and do some algebra and we get that

P̄ = r

2
F 2

0
m2ω

2 1
(ω2

0 − ω2)2 + γ2ω2

This is the expression for the power delivered by the driving force over one period.

Now we want to look at the power dissipated by Fr = −rẋ. We claim that this is going to be exactly
the same as the previous expression. We can do the math out:

PI = Frv

= rv2

= r(ωA cos(ωt− φ))2

Once again we are interested in the average power dissipated:

P̄ = 1
T

∫ T

0
PI dt

= 1
T

∫ T

0
rω2A2 cos2(ωt− φ) dt

= rω2A2

T

∫ T

0
cos2(ωt− φ) dt

= rω2A2

2

This tells us that the power dissipated by the dissipative force over 1 period is

P̄ = 1
2rω

2A2

If we now plug in the value of A:

P̄ = r

2
F 2

0
m2ω

2 1
(ω2

0 − ω2)2 + γ2ω2)

This shows us that the average power delivered and the average power dissipated are equal.
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4.4.3 Transient State

Recall that the equation of motion that we are using takes the form

m
d2x

dt2
+ r

dx

dt
+ sx = F0 cos(ωt)

We can ask ourselves what would happen if we turned on the driving force later in the system? If
we remove the driving force term, we see that we have a solution of the form

X1 = A1e
−r
2m t sin(ω′ + φ1)

where ω′ =
»
ω2

0 − r2

4m2 . We also know that when we turn on the driving force, we have a solution
of the form

X2 = A2 sin(ωt− φ2)

This second solution is known as the steady state solution. We can make the claim that X = X1 +X2
is also a good solution of the equation of motion, which we can see just by inspection (Can think
about diffeq and homogeneous solution and particular solution). This tells us that the general
solution is

X = A1e
− r

2m t sin(ω′t+ φ) +A2 sin(ωt− φ2)

This solution means that if we start oscillating the system, the system will start off oscillating like a
damped oscillation, and it will decay exponentially, leaving behind the steady state solution. This
will give us something that looks like a system being driven by 2 frequencies (think about beats),
with an inner oscillation and an enveloping oscillation.

Eventually this will die down, and we will be left with a steady state solution. The time before the
system reaches the steady state is known as the transient state or transient mode.

4.5 RLC Circuits
An RLC circuit is made up of a capacitor, inductor, and a resistor in a closed circuit. In one of
these circuits, the total voltage in the system is the driver. We get the equation of motion by taking
the voltages of each of the components, VL, VR, and VC , and summing them:

VL + VR + VC = V0 cos(ωt)

Rewriting and replacing each term with the correct expression:

L
dI

dt
+ IR+ q

c
= V0 cos(ωt)

4.5.1 Solving the Equation

We start by remembering that I = dq
dt , leaving us with

L
d2q

dt2
+R

dq

dt
+ q

c
= V0 cos(ωt)

This looks exactly like the equation that we had for the spring. Traditionally, we don’t solve it the
same way. We first rewrite the RHS in exponential form, and then rewriting I as an exponential as
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well (I = I0e
iωt), and we solve the problem in terms of I instead of q. We can then compute some

values:
VL = iωLI0e

iωt VR = RIeiωt VC = 1
c

∫
I dt = 1

icω
I0e

iωt

Inserting these all into the diffeq:

(iωL)I0e
iωt +RI0e

iωt − i

cω
I0e

iωt = V0e
iωt

Factoring and solving for I0:
I0 = V0

R+ i(Lω − 1
cω )

This quantity in the denominator is known as Z, and is called the impedance. This quantity is
complex:

Z = |Z|eiφ

|Z| = (R2 + (Lω − 1
cω

)2)
1
2

tanφ =
Lω − 1

cω

R

If we go back to I:

I = V0e
i(ωt−φ)

(R2 + (Lω − 1
cω )2)

1
2

Taking the real part of this:

Re(I) = V0
|Z|

cos(ωt− φ)

4.5.2 Voltage Across Inductor/Resistor/Capacitor

If we have Z and I0, we can find quantities like VR:

VR = RI = R( V0
|Z|

)ei(ωt−φ)

Taking the real part:
Re(VR) = R

Z
V0 cos(ωt− φ)

We can see that if we compare the phase of V and R, we have a phase difference of φ.

Doing the same process for VL:

VL = i2Lω = Lω

Z
V0(iei(ωt−φ))

This i on the outside rotates it by π/2:

VL = Lω

|Z|
V0e

i(ωt−φ+π
2 )

Taking the real part:
Re(VL) = Lω

|Z|
V0 cos(ωt− φ+ π

2 )
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Doing the same thing for VC :

VC = −i
cω
I =

1
cω

|Z|
V0(−iei(ωt−φ))

Using the fact that −i = e−
π
2 :

VC = 1
cω|Z|

V0e
i(ωt−φ−π2 )

Taking the real portion:
Re(VC) = 1

cω|Z|
V0 cos(ωt− φ− π

2 )

Notice that VR peaks at ω = ω0, but VC and VL peak at different times. Also note that the natural
frequency is 1√

LC
.

If we take VR:
VR = RV0 cos(ωt− φ)

Z

VR = RV0 cos(ωt− φ)
L
ω ((ωRL )2 + (ω2

0 − ω2)2)
1
2

If we plot this, we see that the peak is close to ω0 for large Q:

Q = ω0L

R

We can again work out the instantaneous power:

P = V I

and we can then calculate the average power:

P̄ = 1
T

∫ T

0
V I dt

We can see that this peaks at ω = ω0, and the FWHM for the power curve is given by R
L .

5 Normal Modes and Coupled Oscillators
If we think about an atomic lattice, the bonds between the atoms are electromagnetic, and we can
actually think of them as being bound by springs. This is a very classical solution to an inherently
quantum problem, but it turns out that the classical solution gives some insight into how the lattice
behaves. We could find out what type of vibration frequencies can actually propagate through
the material. We will use these coupled oscillators to learn about how waves propagate through a
medium.

Taking the example of the atomic lattice again, if we disturb just one atom in the lattice (let’s say
its just a 2d lattice for now). We can think of this setting off a wave throughout the rest of the
lattice.



PHYS273 Notes (Section 0101) Hersh Kumar
Page 22

5.1 Coupled Spring and Mass Oscillators
We can start from a simple system, two masses connected via three springs to two walls. For
simplicity’s sake, we’ll keep the masses equal to m, and the spring constants of the 2 side springs
equal to k. We call the spring constant of the center spring k′. We can call the distance from the
equilibrium position of the two masses, x1 and x2, which both start at 0. To start the oscillation,
we can move the second mass some amount (x2 = A).

If we want to find out what the force acting on mass 1 is:

F1 = mẍ1 = m
d2x1
dt2

And the force acting on mass 2:

F2 = mẍ2 = m
d2x2
dt2

Looking at all the forces acting on the first spring:

F1 = −kx1 − k′(x1 − x2)

And the forces acting on the second spring:

F2 = −kx2 − k′(x2 − x1)

Note that the second term has to be opposite because of Newton’s third law. However, this method
of finding the forces is kind of handwavy, so we have a better way of solving the problem.

5.1.1 A Better Way to Find the Forces

We want to use the potential energy (F = −dU
dx ). We know it will be the sum of the potential

energies of the springs:
U = 1

2kx
2
1 + 1

2k
′(x1 − x2)2 + 1

2kx
2
2

If we now want to get the force F1, we can take the partial derivative with respect to x1:

F1 = − ∂U
∂x1

= −kx1 − k′(x1 − x2)

This is exactly what we got before. We can do the same thing for F2, taking the partial derivative
of the potential with respect to x2, and we will see that we get what we got prior to this. This
method is almost always viable, so its generally a better choice than thinking about the forces from
the start.

Now that we have these two equations, we can use F = ma to get the coupled differential
equations:

m
d2x1
dt2

= −kx1 − k′(x1 − x2) m
d2x2
dt2

= −kx2 − k′(x2 − x1)
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5.1.2 Solving the Coupled Equations

One method to solve this is to sum the two equations, and subtract the two equations, and we see
that terms will cancel. Let’s think about this system physically. One type of motion is when the
two masses are moving in the same direction, and we can see that the oscillations work together.
The other type of motion is the right mass going right and the left mass going to the left. This is
when they are oscillating separately/opposite of each other.

Adding the two equations:

m(d
2x1
dt2

+ d2x2
dt2

) = −k(x1 + x2)

And subtracting the two equations:

m(d
2x1
dt2
− d2x2

dt2
) = −(k + 2k′)(x1 − x2)

Taking the top equation, we can call z = x1 + x2, and we are left with

m
d2z

dt2
= −kz

We can see that this will just be simple harmonic motion:

(x1 + x2) = 2As cos(ωst+ φs)

We can see that ωs =
»

k
m . This is a slow oscillation.

Looking at the second equation, we can call z′ = x1 − x2:

m
d2z′

dt2
= −(k + 2k′)z′

This is also simple harmonic motion, with frequency ωf =
»

k+2k′
m :

(x1 − x2) = 2Af cos(ωf t+ φf )

We use the 2s because they will help us later.

5.1.3 Normal Modes

The system supports two modes of oscillation, ωs and ωf . We have what we call the normal
coordinates/variables, x1 + x2 and x1 − x2. Note that if the two masses were different, we would
have normal variables that are different, and that are dependent on the masses. However, we can
solve that issue with the same methods that we used here. If we write down the solutions:

(x1 + x2) = 2As cos(ωst+ φs) (x1 − x2) = 2Af cos(ωf t+ φf )

If we take the sum of these and divide by 2:

x1 = As cos(ωst+ φs) +Af cos(ωf t+ φf )

If we subtract and divide by 2:

x2 = As cos(ωst+ φs)−Af cos(ωf t+ φf )
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5.1.4 Example of a Special Case

Assume that ẋ1 = 0 and ẋ2 = 0 for initial conditions, and x1 = 0, x2 = A. Looking at the solutions:

x1 = As cos(ωst+ φs) +Af cos(ωf t+ φf )

Taking the derivative:
ẋ1 = −ωsAs sin(ωst+ φs)− ωf sin(ωf t+ φf )

Plugging in initial conditions:

ẋ1(0) = −ωsAs sinφs − ωfAf sinφf = 0

Repeating this process for x2:

ẋ2(0) = −ωsAs sinφs + ωfAf sinφf = 0

Adding the two expressions, we get that sinφs = 0, and if we subtract them, we get sinφf = 0. We
take the simplest condition that φs = φf = 0.

For the amplitudes:
x1(t) = As cosωst+Af cosωf t

x1(0) = As +Af = 0

As = −Af
Doing the same thing for x2, we get that As − Af = A, which gives us that As = −Af = A

2 . We
can then rewrite our solutions:

x1(t) = A

2 (cosωst− cosωf t) x2(t) = A

2 (cosωst+ cosωf t)

If we recall the lecture on beats:

x1(t) = A sin(ωf − ωs2 t) sin(ωf + ωs
2 t) x2(t) = A cos(ωf − ωs2 t) cos(ωf + ωs

2 t)

We have talked about how to analyze a chain of coupled oscillators, primarily a system with 3
springs and 2 masses. We figured out how to find the forces associated with the system, and we
were able to get the equations of motion that governed the system. We saw that they were coupled
differential equations, meaning that there was no easy way of solving them. We saw that if we
added/subtracted the equations, we were left with self contained differential equations, which we
saw gave us two different oscillation types, one being the fast oscillation and the other being the
slow oscillation.

5.1.5 Determinant Method

We can actually solve this set of couple equations in another method, known as the determinant
method, which is more cumbersome, but works better in general.

m
d2x1
dt2

= −kx1 − k′(x1 − x2) m
d2x2
dt2

= −kx2 − k′(x2 − x1)
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We say that x1 = A1e
iωt, and that x2 = A2e

iωt. We write this in a matrix format:ï
x1
x2

ò
=
ï
A1
A2

ò
eiωt

Taking these solutions and plugging them into the coupled equations:

−mω2A1e
iωt = (−kA1 − k′A1 + k′A2)eiωt

−mω2A2e
iωt = (−kA2 − k′A2 + k′A1)eiωt

We can see that the exponentials cancel out in both equations:

−mω2A1 = (−kA1 − k′A1 + k′A2)

−mω2A2 = (−kA2 − k′A2 + k′A1)

And rewriting, moving everything to one side:

(−mω2 + k + k′)A1 − k′A2 = 0

(−mω2 + k + k′)A2 − k′A1 = 0

Writing this in matrix form:ï
−mω2 + k + k′ −k′

−k′ −mω2 + k + k′

ò ï
A1
A2

ò
= 0

To solve this, we see that we have the trivial solution A1 = 0, A2 = 0, but we also have a non-trivial
solution. The non-trivial solution will occur in situations where our matrix doesnt have an inverse,
which via linear algebra is true when the determinant of the matrix is 0. The determinant of this
matrix is

(−mω2 + k + k′)2 − k′2 = 0

If we solve this, we find that we have two solutions:

ωs =
…
k

m
ωf =

…
k + 2k′
m

These are the same solutions that we had before. We can also plug these back into the equations to
get the same normal coordinates that we got before.

5.1.6 Adding in Damping/Driving Forces

If we added a dissipative force to both masses of Fd = −rẋ, and a driving force F = F0 cosωt to
mass 1, what would our equations look like?

m
d2x1
dt2

= −kx1 − k′(x1 − x2)− rẋ1 − F0 cosωt

m
d2x2
dt2

= −kx2 − k′(x2 − x1)− rẋ2

Taking the sum:
m(ẍ1 + ẍ2) = −k(x1 + x2)− r(ẋ1 + ẋ2) + F0 cosωt
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and taking the difference:

m(ẍ1 − ẍ2) = −(k + 2k′)(x1 + x2)− r(ẋ1 − ẋ2) + F0 cosωt

Taking these equations, we can see that we’d have two resonances:

ωs =
…
k

m
ωf =

…
k + 2k′
m

And we’d have
x1 + x2 = 2As cos(ωst+ φs)

Where
As = F0»

(ω2
s − ω2)2 + ( rmω)2

And something similar for Af :

Af = F0»
(ω2
f − ω2)2 + ( rmω)2

You could then do the same thing we did before, and get solutions for x1 and x2.

5.2 Pendulums with Spring
Take the system comprising of 2 masses m as pendulums, connected by a spring of spring constant
k. If we disturb the system, there are several things that can happen. In one situation, they can
swing together, and in another, they swing in opposite directions. This tells us that we have 2
normal modes. Lets get the equations of motion by getting the potential energy:

U = 1
2k(x1 − x2)2 + 1

2mg
x2

1
l

+ 1
2mg

x2
2
l

Taking the partial derivatives:

F1 = − ∂U
∂x1

= −k(x1 − x2)− mgx1
l

F2 = − ∂U
∂x2

= −k(x2 − x1)− mgx2
l

Implementing F = ma, and adding/subtracting the two equations:

m
d2(x1 + x2)

dt2
+ g

l
(x1 + x2) = 0

m
d2(x1 − x2)

dt2
+ ((g

l
) + 2 s

m
)(x1 − x2)

We once again see that we have the same two normal coordinates, x1 + x2 and x1 − x2.
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5.3 Three Mass System
What if we took the first system, but added another mass and spring (and made all the spring
constants the same)? In this system, using the potential method to get the forces helps a lot:

U = 1
2kx

2
1 + 1

2k(x1 − x2)2 + 1
2k(x2 − x3)2 + 1

2kx
2
3

We can then go ahead and take the partial derivatives. We will then see that there is no easy
method of adding/subtracting the equations, so the best approach is to use the determinant/matrix
method. We see that we’ll get 3 normal modes, 3 normal coordinates, and 3 normal frequencies.

5.4 Loaded Strings
We want to look at systems that are loaded strings, strings under tension with masses at equal
distances placed on top of them. We want to see what happens if we displace one of the masses
vertically. Intuitively, the mass will start to oscillate, and the oscillation will cause the masses to
either side to oscillate. This will create a wave of oscillations of the masses along the string.

If we look at some arbitrary mass along the string (the masses are apart by a distance of a), and we
raise it by a height of y, we see that we have two tensions, one to either side. We can name the
angles from the horizontal to the string, θ1 and θ2, and we see that we have a vertical restoring
force (the horizontal tension forces cancel each other out):

−T (sin θ1 + sin θ2)

Now we can try to find expressions for sin θ1 and sin θ2. We label the masses via r’s, and we have
the height difference between the left bead r − 1 and the bead being lifted r, and we can get an
expression:

sin θ1 = yr − yr−1
a

And one for the angle on the right side:

sin θ2 = yr − yr+1
a

Inserting these into the expression and using F = ma:

m
d2yr
dt2

= T

a
(yr−1 − 2yr + yr+1)

We have an equation of motion for mass number r, which we can now try to solve. We can now
guess a solution:

yr = Are
iωt

where Ar ∈ C. Doing the math and inserting this guess into the equation, we find that

−Ar−1 + (2− maω2

T
)Ar −Ar+1 = 0

Let’s now impose some boundary conditions. We assume that the first and last beads are tied down,
so y0 = A0 = 0 and yn+1 = An+1 = 0. If we do this, and we say that n = 1, we find that

(2− maω2

T
)A1 = A2
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For this to be true, the left term must be 0, so

ω2
1 = 2T

ma

We have n possible ωs, labelled 1 through n. We call T
ma = ω2

0, so we see that ω2
1 = 2ω2

0.

Let’s go back to the general solution, and lets rewrite it:

−Ar−1 + (2− maω2

T
)Ar −Ar+1 = 0

Ar−1 +Ar+1
Ar

= (2− maω2

T
)

=
2 T
ma − ω

2

T
ma

= 2ω2
0 − ω2

ω2
0

Ar−1 +Ar+1
Ar

= 2ω2
0 − ω2

ω2
0

This equation is interesting because the right side of the equation is totally independent of r.

Let’s now look at Ar. We have said that it is a complex quantity, which has a phase. Via intuition,
we can say that the phase of nearby masses will be incrementally different from each other. We can
write Ar:

Ar = Ceirθ

where C = |C|eiδ. Note that δ is the phase that is global, and is in all the masses, while θ changes
depending on the mass. If we put this into practice in the equation above:

Cei(r−1)θ + Cei(r+1)θ

Ceirθ
=

= e−tθ + eiθ

= 2 cos θ

Inserting this and looking at the right side:

2 cos θ = 2ω2
0 − ω2

ω2
0

Now lets apply the boundary conditions. We know that A0 = 0:

Re(A0) = |C| cos δ = 0

This gives us that δ = π
2 . This means that Ar = |C|eir(θ+

π
2 ). Taking the real portion:

Re(Ar) = |C| sin rθ

Applying the boundary condition that An+1 = 0:

Re(An+1) = |C| sin(n+ 1)θ = 0
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This means that (n+ 1)θ = jπ, where j = 1, 2, . . . , n. Note that the different values for j represent
the n normal modes. Solving for θ:

θ = jπ

n+ 1
Plugging this in:

Ar = |C| sin( rjπ
n+ 1)

In this expression, n is the number of masses, r is the mass number, and j is the normal mode of
oscillation. We can get an expression for the amplitude of the rth mass in normal mode j:

yjr(t) = |C| sin( rjπ
n+ 1)eiωjt

Where ωj can be given via
ω2
j = 2ω2

0(1− cos( jπ

n+ 1))

and θj = jπ
n+1 . We see that we have a system with a maximum frequency of 2ω0. We know that

ω2
0 = T

ma :

ω2
0 = 1

a2
T

µ

where µ is the mass density (kg/m). If we go back and look at the NaCl atomic lattice, we don’t
really know what T is, but we do know the mass density µ. If we take a saly crystal and apply some
force F , we can look at the Young Modulus:

Y =
F
A

∆L
L

where A is area. For salt, we see that this value is 1011 Newtons per square meters. If we take this
value and divide it by ρ (volume density), we can see that this has the same units as T/µ. We make
the assumption that

2ω0 ≈
1
a

 
Y

ρ

Taking the atomic spacing for salt, and inserting everything in, we see that 2ω0 for salt is roughly
1013 Rad/s, which is in the infrared spectrum. The maximum frequency 2ω0 is know as the cutoff
frequency. If we think about oscillating the first mass on the string, we can physically see that the
oscillations propagate like a wave through the rest of the string. We have that

d2yr
dt2

= T

ma
(rr+1 − 2yr + yr−1)

And we can think about what happens if we make the spacing a very small, making it some dx. We
can now label each mass from just the x position along the string. Rewriting this formula:

∂2y(x, t)
∂t2

= T

m
(yr+1 − yr

a
− yr − yr−1

a
)
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Note that we Taylor expanded yr+1 = y(x+∆x) = y(x)+dx dydx + 1
2(dx)2 d2y

dx2 , and yr−1 = y(x−∆x) =
y(x)− dx dydx + 1

2(dx)2 d2y
dx2 . Inserting these into the expression and simplifying:

∂2y(x, t)
∂t2

= T

m
(dxd

2y

dx2 )

Recall that mass density µ = m
a = m

dx , so we are left with

∂2y(x, t)
∂t2

= T

µ

∂2y

∂x2

This is telling us that if we have a string tied at both ends, and extremely close masses along the
entire string, and we disturb one of the masses, this function will describe how the disturbance
from the start point will travel through the string. This is what we call a wave, a propagation of
a disturbance in a string. If we want to find the speed of the wave, we can do some dimensional
analysis. Looking at T

µ , we see that it has dimensions of velocity squared. We claim that this has
the right properties to be the speed of the wave, but that’s just a guess.

6 Transverse Waves
We want to look at transverse waves in a string that is under tension. We say that the string is
under tension T . We take a tiny portion of the string, of length δx. If we disturb it by a slight angle
θ from the horizontal, we have a transverse force T sin θ. The restoring force is T sin(θ+δθ)−T sin θ.
If θ is small, then sin θ ≈ tan θ, which is approximately equal to the slope of the string, which is dy

dx .
The restoring force can be written as

FR = T (dy(x+ ∆x)
dx

− dy(x)
x

)

= T
d2y(x)
dx2 δx

By Newton’s Law F = ma (Also realizing that we’re actually using partials since y depends on t):

T (∂
2y(x, t)
∂x2 δx) = m

∂2y(x, y)
∂t2

We know that m = ρδx, where ρ is mass per unit length.

T (∂
2y(x, t)
∂x2 )δx = ρδx

∂2y(x, t)
∂t2

Cancelling δx, we discover that
∂2y(x, t)
∂x2 = T

ρ

∂2y(x, t)
∂t2

This is just the same type of wave equation we found earlier. We see that T/ρ has units of velocity
squared. Throughout this course, we will see many instances where we end up with a differential
equation that looks like this, the solution of which describes the propagation of a wave. For example,
we will work with longitudinal waves (like sound waves). We want to come up with an equation
that looks like this. The same applies to electromagnetic systems, like waves travelling through a
cable. We will use Maxwell’s equations to get a wave equation that looks like this.



PHYS273 Notes (Section 0101) Hersh Kumar
Page 31

6.1 Solution to the Wave Equation
We want to find the solution to the general wave equation

∂2y(x, t)
∂x2 = 1

c2
∂2y(x, t)
∂t2

It can be shown that any function of the form y = f(ct−x) is a solution to this. If we let z = ct−x,
and we compute the derivatives:

∂y

∂x
= ∂f

∂z

∂z

∂x
= −f ′

∂2y

∂x2 = f ′′

∂y

∂t
= cf ′

∂2y

∂t2
= c2f ′′

Inserting these into the wave equation:

f ′′(ct− x) = 1
c2 (c2f ′′(ct− x))

f ′′(ct− x) = f ′′(ct− x)

We can also similarly show that y = f(ct+ x) is also a viable solution. Let’s think about what the
physical meaning of this function is. If we factor the expression:

y = f(ct− x) = f(c(t− x

c
))

This means that if we take the string at location x, and we knew the initial conditions of the string
at x, this is the same thing as what the string is doing at t = t− x

c . In other words, the transverse
position of the string at (x, t) is the same as that at t− x

c . This means that the wave has a finite
velocity. The disturbance in a physical wave is never instantly propagated. This specific type of
wave is called a right travelling wave, and y = f(ct+ x) is a left moving/travelling wave. In general,
you can have both left moving and right moving waves in a string, so we have a general solution:

y = f1(ct− x) + f2(ct− x)

If we assume that the initial disturbance is SHM:

y(x = 0, t) = a sinωt

then the solution to the wave equation would be

y = a sin(ω
c

(ct− x))

We can rewrite ω/c:
ω

c
= 2πv

c
= 2π
cT

= 2π
λ

where λ is known as the wavelength, the distance between one crest to crest or trough to trough.
Note that this all only works if we have the disturbance being a periodic function.
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We said that
y = a sin(ω

c
(ct− x))

Which we can rewrite:
y = a sin(ωt− ωx

c
)

We can define k = 2π
λ , which is known as the wave number:

y = a sin(ωt− kx)

Note that k has nothing to do with the notation sometimes used for spring constants. We can also
write the equation exponentially:

y = aei(ωt−kx)

6.2 Changing Mediums
Now we want to look at the string again, but in the case where the physical properties of the string
change at some point. Say for example at some point along the string, the mass density changes
from ρ1 to ρ2. We want to find out what happens to the transmission of the wave. We know that
the velocity is given by

»
T
ρ1

in the first part of the string, and in the second part of the string the
wave has velocity

»
T
ρ2
.

What happens at the point where the medium changes? Let’s zoom in on the one point, and call
it x = 0. At this point, we need to get the boundary conditions. Before we do this, lets address
one misconception of waves. When we look at the wave, particles aren’t actually travelling from
left to right, instead, the displacement is changing. Essentially, the forces on the string are varying,
causing the wave.

If we have a continuous system, and we figure out the displacement from the initial wave yi, we can
think of some part of the wave being reflected back, and some of it being transmitted, yr and yt
respectively. Continuity tells us that at the point x = 0:

yi + yr = yt

We can also find the force acting on the string at that point:

T (∂(yi + yr)
∂x

) = T (∂yt
∂x

)

Looking at the boundary conditions, we know that

yi = A1e
i(ωt−k1x)

Note that k changes because it is dependent on ρ, which is changing. We also know that

yr = Bei(ωt+k1x)

Both of these are in medium 1, with ρ1, and note that yr is left moving. The third part is

yt = A2e
i(ωt−k2x)

Applying the equations at t = 0 and x = 0, we see that

A1 +B = A2
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Applying the second equation:

−k1A1 + k1B = −k2A2

Using simple algebra, we see that the net result is that

A2
A1

= 2k1
k1 + k2

B

A1
= k1 − k2
k1 + k2

We know what fraction of the wave reflects, and what fraction of the wave transmits through to the
next medium. Rewriting, we see that

k1 = ω

c1
= ω√

T

√
ρ1

k1 = ω√
T

√
ρ2

Using these:
A2
A1

=
2√ρ1√
ρ1 +√ρ2

B

A1
=
√
ρ1 −

√
ρ2√

ρ1 +√ρ2

Now lets consider some special cases. The first case is that of a brick wall. The string has some
mass density ρ1, and it reaches a wall, which is best represented as ρ2 =∞. If we do this, we see
that the reflected wave

R = B

A1
=
√
ρ1 −

√
ρ2√

ρ1 +√ρ2
= −1

We see that the entire wave gets reflected, and the wave is inverted. Looking at the transmitted
wave

T = A2
A1

=
2√ρ1√
ρ1 +√ρ2

= 0

This is exactly what we expected, no transmission through the brick wall.

Lets look at the case where ρ1 > ρ2, which means the first part of the string is much thicker than
the second part of the string. Using the same equations, we see that

R =
√
ρ1 −

√
ρ2√

ρ1 +√ρ2

This tells us that 0 < R < 1, and if we look at the expression for T , we see that 1 < T < 2.

In the opposite case, where ρ2 > ρ1, we see that −1 < R < 0, and that 0 < T < 1. We see that the
reflected wave will always be inverted.
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6.3 Energy Along a Vibrating String
We have some piece of the string with mass dm, and we have some change in the arclength, which
is essentially a line ds, which can be broken up into some change in x and some change in y, which
gives us that

ds2 = (dx2 + dy2)

We can see that dm = ρ dx (approximating that ds ≈ dx), and we can rewrite ds2:

ds = dx(1 + (dy
dx

)2)
1
2 ≈ dx(1 + 1

2(dy
dx

)2)

Where we’ve done a Taylor expansion, under the assumption that ds is small.

We want to find the kinetic energy of the system. In this case:

E = 1
2dmv2

y

Where vy is the transverse velocity (the oscillations going up and down, not the velocity of the
propagation of the wave). We can write that

vy = ∂y(x, t)
∂t

Leaving us with
Ek = 1

2ρ dx(∂y(x, t)
∂t

)2

If we do kinetic energy per unit length:

Ek = 1
2ρ(∂y

∂t
)2

Looking now at the potential energy in the system, we know that potential energy is the work done
against the force T : ∫ ds

dx
T ds

Note that we assume that the potential energy is 0 when the string is flat.∫ ds

dx
T ds = T (ds− dx)

= T (dx(1 + 1
2(∂y
∂x

)2)− dx)

= T dx(1
2(∂y
∂x

)2)

The potential energy per unit length becomes

1
2T (∂y

∂x
)2

We have now found expressions for both Ek and Ep. If we take our solution

y = f(ct− x)
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we see that ∂y
∂t = cf ′, and we see that ∂y

∂x = −f ′, giving us the relationship that

∂y

∂t
= −c∂y

∂x
→ c2 = T

ρ

We can take this relationship and use it in the expression for kinetic and potential energies, and we
see that

Ek(x, t) = 1
2ρ(∂y

∂t
)2 Ep(x, t) = 1

2ρ(∂y
∂t

)2

We know that the total energy per unit length is the sum of these two:

ET (x, t) = ρ(∂y
∂t

)2

If we compute the derivatives using y = A sin(ωt− kx):

ET = ρω2A2 cos2(ωt− kx)

If we now take the average of the total energy per unit length over one period:

EAvg = 1
T

∫
ET (x, t) dt

= 1
2ρω

2A2

This looks familiar, as this is what we get from a simple harmonic oscillator.

Let’s now look at the rate of energy flow (averaged over a period), which is equal to the energy at
any point, times the velocity. We claim that power is the energy delivered (to maintain the wave)
per second. We can try to find out how far the wave travels in 1 second, which we know to be c, so
the power is equal to the energy per unit length times c.

Looking at the initial wave:
ρ2ω

2A2
1c1

And looking at the reflected wave:
ρ1ω

2B2c1

And finally looking at the transmitted wave:

ρ2ω
2A2

2c2

If we want to find the ratio of reflected power to initial power:

B2

A2 = (k1 − k2
k1 + k2

)2

And we can find the ratio between the transmitted power and the initial power:

ρ2ω
2A2

2c2
ρ1ω2A2

1c1
= ρ2c2
ρ1c1

(A2
A1

)2 = ρ2c2
ρ1c1

( 2k1
k1 + k2

)2
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The quantity ρc is known as the characteristic impedance, and is denoted by Z:

Z = ρc = T

c
= (T

ω
)k

Using this to rewrite that last ratio:

Tk2
ω
Tk1
ω

( 2k1
k1 + k2

)2 = 4k1k2
(k1 + k2)2

And if we take this new ratio and and it to the previous one (transmitted/initial + reflected/initial),
we see that we get 1. We see that the overall energy flow is conserved, which is what we expected.

6.4 Standing Waves
If we have a string of length l, pinned at both ends by walls, and we have some initial travelling
wave (first term), we have some of it being reflected (second term).

y = aei(ωt−kx) + bei(ωt+kx)

If we assume that at x = 0, y = 0, we can insert the boundary conditions, and we see that

y(0, 0) = a+ b = 0

Which tells us that a = −b. Inserting this fact into the equation for y:

y = a(ei(ωt−kx) − ei(ωt+kx))
= aeiωt(e−ikx − eikx)
= −2aieiωt sin(kx)

Taking the constants and putting them all into one constant A:

y = Aeiωt sin(kx)

We can now look at x = l, where we know that y = 0. Looking at t = 0, x = l:

y(l, 0) = A sin(kl) = 0

Which tells us that kl = nπ, so 2π
λ l = nπm and thus

λn = 2l
n

And from there we can get the frequency:

ωn = nπc

l

These are the normal modes, also known as the harmonics of oscillations. This means that the
lowest frequency allowed is ω1:

ω1 = cπ

l
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And the longest wavelength allowed is given by λ1.

What happens if one of the ends is free? If we have the right end be a massless ring that is allowed
to move up and down, we have the same initial moving wave term, but what happens at the right
end. There can’t be a transverse force, which means that

−T ∂y
∂x

= 0→ Aeiωtk cos(kl) = 0→ kl = (2n+ 1)π2

We can see that the frequencies that are allowed are different.

6.5 Travelling Waves
Let’s do an example of a travelling wave. Let’s say we have a very long string (100 meters). If we
have a wave given by y = A sin(10t− 5x), which is right moving. We can ask what the frequency is,
which we can see is 10 rad/s, and this gives us a ν = 5

π . We can ask for the speed of the wave as it
travels, which we can find, and we can also ask about the tension, which we can get from c =

»
T
ρ .

To find the transverse velocity of the wave, we can just take the derivative with respect to t of y.
From this, we have all the parameters of this travelling wave.

We can also ask about the first harmonic frequency (also called the fundamental frequency) of the
wave when it hits the other end and turns into a standing wave. The first harmonic of a standing
wave occurs when λ = 2L, and λ = c

ν , giving us

ν1 = c

2L νn = n
C

2L

There are two types of velocities when looking at a travelling wave. One of them is the speed/velocity
of the the wave being transmitted, and the other is the transverse velocity. This first velocity is
known as the phase velocity, and is denote by c or v. Essentially, the phase velocity is the speed by
which a constant phase is travelling. This can be seen if we track a single point, such as a crest of a
wave. If we have the wave

y = A sin(ωt− kx)

We can define the phase velocity φ(x, t), which we know is
»

T
ρ .

φ(x, t) = ωt− kx

dx

dt
= ω

k
= c

Now consider two travelling waves on a string:

y1 = a cos(ω1t− k1x) y2 = a cos(ω2t− k2x)

The total displacement at x and t is equal to the sum:

y = y1 + y2

which is a superposition.

y = a(cos(ω1t− k1x) + cos(ω2t− k2x))



PHYS273 Notes (Section 0101) Hersh Kumar
Page 38

= 2a cos((ω1 − ω2)
2 t− (k1 − k2)

2 x) cos((ω1 + ω2)
2 t− (k1 + k2)

2 x)

We saw something similar to this in SHM when talking about beats, and we see that we have similar
enveloping oscillations, with the rapid frequency oscillation (ω1−ω2

2 ) being enveloped by a slower
oscillation frequency ((ω1+ω2

2 )). The speed of the fast oscillation (also known as the phase velocity)
can be given by

vf =
ω1+ω2

2
k1+k2

2
= ω1 + ω2
k1 + k2

The slow velocity, know as vg (g stands for group):

vg = ω1 − ω2
k1 − k2

We can ask ourselves whether these two are the same, i.e, is vg = vp? We know that vp =
»

T
ρ =

ω1
k1

= ω2
k2
, and via this we can easily show that vg = vp.

But what would happen if vp was a function of ω (vp(ω))? (This is known as a dispersive medium)
We see that in that case, vg is not necessarily equal to vp. If we look at vg in the limit where ω1 is
close to ω2:

vg = dω

dk

For standing waves, the normal modes can be given by νj = jν1. However, for a loaded string, we
previously found that ωj = 2ω0 sin( jπ

2(n+1)). We see that the normal modes here are not similar at
all! Can we go from the loaded string to the string? If we take very large m and small j, we can
simplify sin( jπ

2(n+1)) ≈ jπ
2(n+1) , leaving us with

ωj = 2ω0
jπ

2(n+ 1)

Remember that
ω0 = ( T

ma
)

1
2 = 1

a
( Tm
a

)
1
2

ω0 = 1
a

(T
ρ

)
1
2

Inserting these into ωj :

ωj = 2
a

(T
ρ

)
1
2 ( jπ

2(n+ 1))

Note that a(n+ 1) = L.
ωj = c

L
jπ

2πνj = c

L
jπ

νj = c

2Lj

This is exactly the result we got from the strings (tied up at both ends). However, this is only when
j is small and n is very large, but what about the case where j is close to n. If we do this case out,
we see that the velocity depends on the frequency. Also a general fact, higher normal modes travel
slower.
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If we go back to a loaded string with masses at distances a apart from each other, we have that

m
∂2yr
∂t2

= T

a
(yr−1 − 2yr + yr+1)

What happens if we have a travelling wave on this:

yr = aei(ωt−kx)

In this case, x is discrete, so we have to label it x = ra:

yr = aei(ωt−kra)

If we plug this into the first equation:

−mω2ei(ωt−kra) = T

a
eiωt(e−ik(r−1)a − 2eikra + e−ik(r+1)a)

Factoring out eiωt and eikra:
−mω2 = T

a
(eika + e−ika − 2)

We can rewrite this as
−mω2 = T

a
(e

ika
2 − e−

ika
2 )2

We can then simplify this down to

mω2 = T

a
(2i sin(ka2 ))2

−mω2 = −4T
a

sin2(ka2 )

Solving this for ω2:
ω2 = 4T

am
sin2(ka2 )

For a travelling wave in a non-dispersive medium, we would have expected ω/k = c, but we see that
that is not true. We also see that the maximum frequency is

»
4T
am , the cutoff frequency. We see

that for long wavelengths (same as low frequency), ka is small (via the relationship k = 2π
λ ). Using

the small angle approximation:
sin ka2 ≈

ka

2
We see that

ω2 = 4T
ma

k2a2

4 = Tk2a

m

ω2

k2 = T
m
a

= T

ρ
= c2

We see that this is the behavior of a non dispersive medium. This means that for low frequencies,
the medium is non-dispersive.

What if we have a superposition of a group of waves? If we have waves of frequencies ω, ω + δω, ω +
2δω, . . . , ω + nδω. What would the total wave look like? Each of the waves can take the form:

y0(x, t) = a cos(ωt− kx) y1(x, t) = a cos((ω + δω)t− (k + δk)x)
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For a moment, lets let x = 0. If we do this, and take the sum of all of these waves:

R =
n−1∑
j=0

a cos((ω + jδω)t)

We can take the real part of this:

R = Re[
n−1∑
j=0

aei(ω+jδω)t]

We call the argument to the Re function Z:

Z =
n−1∑
j=0

aei(ω+jδω)t

We can multiply both sides by eiδωt:

eiδωtZ =
n−1∑
j=0

aei(ω+(j+1)δω)t

If we take this equation, and subtract the original equation from it:

Z(eiδωt − 1) = a(ei(ω+nδω)t − eiωt)

Leaving us with

Z = a
ei(ω+nδω)t − eiωt

eiδωt − 1
Computing the real part of this leaves us with

R = a
sin(nδωt2 )
sin( δωt2 )

cos(ω̄t)

Where ω̄ = ω + 1
2(n− 1)δω. We see that we have a high frequency oscillation ω = ω̄, and a slow

frequency envelope.

We can do something else interesting with this equation. If we call nδω = ∆ω, then

R = a
sin(∆ωt

2 )
sin(∆ωt

2n )
cos(ω̄t)

For very large n, then ∆ω
2n → 0, so we can use a small angle approximation:

R = an
sin ∆ωt

2
∆ωt

2
cos(ω̄t)

If we look at when this is 0, we need ∆ωt
2 = π, which means that when t = 2π

∆ω , we have a 0. This is
essential the width of the time profile of this pulse, ∆t:

∆t = 2π
∆ω
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This is the half width of the time profile. Using this relationship, and the relationship ω = 2πν, we
can see that

∆t∆ν = 1

This is important, because it gives us a relationship between ν and t.

Take for example an atomic transition with a lifetime of τ . We can get that the frequency has a
width of ∆ν:

τ∆ν ≈ 1

Remember that from Planck and Einstein:

E = hν → ∆ν = ∆E
h

∆t∆E
h

= 1→ ∆t∆E ≈ h

This is the Heisenberg Uncertainty Principle.

7 Fourier Series
If we have a reasonably behaved periodic function (can have discontinuities, but they have to be
reasonable.), we can describe it as a sum of sinusoidal waves. For example, we can approximate a
square wave of frequency 5 Hz and amplitude 1 as a superposition of n sinusoids. One caveat is
that we only want n to be an odd number, which we will talk about later. If we look at n = 199, it
looks almost perfect, so if we take n→∞, we can in theory get a perfect approximation.

This is a practical intro to Fourier series. Fourier’s theorem tells us that we can write a periodic
functions as a sum of cosine and sine functions. This is very powerful, and it has many different
applications.

The question is, how do we know which sinusoids to add? And how do we know whether or not we
should be using sines or cosines?

Theorem 7.1 (Fourier Series Theorem). Any reasonably well behaved periodic function (including
piecewise discontinuities), can be represented by:

f(x) = a0
2 +

∞∑
n=1

[an cos(nx) + bn sin(nx)]

We want to find out what an and bn are. To do this, we have to talk about orthogonal functions:∫ 2π

0
sin(nx) sin(mx) dx = 0, n 6= m

∫ 2π

0
cos(nx) cos(mx) dx = 0, n 6= m∫ 2π

0
sin(nx) cos(mx) dx = 0

We can prove these statements by just doing the integrals out, and we see that if n = m, we have π,
and if n 6= m, we get 0.
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Looking back at f(x), we can multiply the function by cos(mx) and integrate:∫ 2π

0
f(x) cos(mx) dx =

=
∞∑
n=1

an

∫ 2π

0
cos(nx) cos(mx) dx+

∞∑
n=1

bn

∫ 2pi

0
sin(nx) cos(mx) dx

From what we just learned via orthogonal functions, we can see that the second term will always be
0, regardless of m and n. The first term is 0 for n 6= m, which gives us

an = 1
π

∫ 2π

0
f(x) cos(mx) dx

If we multiply f(x) by sin(mx) and integrate, we see that via orthogonality we have a similar
situation, leaving us with ∫ 2π

0
f(x) sin(mx) dx = πbn

Putting all of this together:

f(x) = a0
2 +

∞∑
n=1

[an cos(nx) + bn sin(nx)]

an = 1
π

∫ 2π

0
f(x) cos(nx) dx

bn = 1
π

∫ 2π

0
f(x) sin(nx) dx

a0 = 1
π

∫ 2π

0
f(x) dx

Notice that if f(x) is an even function, then bn = 0, and if f(x) is odd, we have that an = 0, which
means that we only need one of the trig functions.

Let’s try to apply this to a square wave. We can split the integrals about the discontinuities:

an = 1
π

∫ π

0
cos(mx) dx−

∫ 2π

π
cos(mx) dx

= 1
π

[( 1
m

sin(mx))π0 − ( 1
m

sin(mx))2π
π ] = 0

Doing the b terms:

bn = 1
π

[
∫ π

0
sin(mx) dx−

∫ 2π

π
sin(mx) dx]

= 1
π

4
n

= 4
nπ

We can also see that a0 = 0. We can now put this all together:

a0 = 0 an = 0 bn = 4
nπ
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where n is odd.
f(x) = 4

π

∞∑
n=1

−1
n

sin(nx) n = odd

we can also write this as
f(x) 4

π

∞∑
n=0

−1
2n+ 1 sin((2n+ 1)x)

Let’s look at this. If we let x = π
2 , we see that f(x) = 1, this tells us that 1 is equal to the series

that we can generate from f :
1 = 4

π
(1− 1

3 + 1
5 −

1
7 + . . . )

What happens exactly at the discontinuities? We see that our function just represents the average
of the two discontinuity values, which is 0:

Series(x) = f(x+) + f(x−)
2 = 0

The reality is that very close to the discontinuity, the series will exceed/overshoot the value of the
wave by about 9 percent of the jump, no matter how many frequencies we add in. This is known as
the Gibb’s phenomenon.

8 Longitudinal Waves
So far we have talked about transverse waves, but what about other types of waves? What about
deformation in solids, liquids, and gases? If we have a rod, and we apply a force F at one end of it.
We know that the rod has some elasticity, given by the Young’s modulus:

E =
F
A

−∆L
L

Where A is the cross-sectional area, and the denominator is the change in the length. The values
of the modulus can be very large, depending on the material, due to different atom bindings and
structure. For aluminum, E = 69 GPa (gigapascals, a unit of pressure), and for glass E = 50− 90
GPa. If E is a very large number, then the change in the length must be very small. This is
why solids seem very nondeformable, although they are. If we think about sound waves travelling
through the solid, we can intuitively guess that the wave velocity c will have to do with the density
and the Young’s modulus:

c ∝
 
E

ρ

These waves will be longitudinal, as we can think of the solid as an infinite number of coupled springs,
which when moved form longitudinal waves. The direction of the propogation of the deformation is
in the same direction as the deformation, whereas in a transverse wave, the propogation was along
the string and the deformation was up and down.



PHYS273 Notes (Section 0101) Hersh Kumar
Page 44

8.1 Waves in Gases
What about gases? Gases are in general characterized by pressure P , volume V , and temperature
T . For ideal gases, we have the well known PV = nRT . If we apply a force to a column of gas,
we’re adding some extra pressure:

P = F

A

The Bulk Modulus Ba is the analog to the Young’s modulus:

Ba = −∆P
∆V
V

For air, Ba = 140 kPa.

What happens when a gas is disturbed? We can talk about an adiabatic process, which is when no
heat is exchanged with the outside of the system. This is an approximate assumption, because we
can assume that the disturbance is very fast. We have that for an adiabatic process:

PV γ = c

where γ = CP
Cv

, or the specific heat at a constant pressure and a specific heat at a constant volume.
We can then take a differential of this:

γPV γ−1∆V + V γ∆P = 0

Simplifying:
Ba = γP0

Let’s start with a column of gas with cross-sectional area A = 1. We have some initial pressure P0,
and some initial volume ∆xA = ∆x. We have some variable excess pressure being added via the
function P (x, t). After the disturbance, the net force is given by

F = A(P ′(x, t)− P ′(x+ ∆x, t)) = P ′(x, t)− P ′(x+ ∆x, t) = −dP
′

dx
∆x

Using Newton’s Law:

−dP
′

dx
∆x = ρ∆xd

2η

dt2

−dP
′

dx
= ρ

d2η

dt2

We have that B = −∆P
∆V
V

:

∆V = η(x+ ∆x, t)− η(x) = dη

dx
∆x

This gives us that
∆V
V

= dη

dx

P ′ = −Bdη
dx
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We can use this, and we’re left with the wave equation:

∂2η

∂x2 = ρ

Ba

∂2η

∂t2

This is just the wave equation, and tells us that c =
»

Ba
ρ . We have seen that c =

»
Ba
ρ for a

longitudinal wave in a gas. Is this a constant? We have that Ba = γP0, and for a diatomic gas like
air, this is 7

5 . This gives us that C =
»

γP0
ρ . We see that this depends on the initial pressure. If

we take air for example, with Pair = 1.3 kilograms per cubic meter, at 1 atmosphere P0, which is
roughly 105 Pa. This tells us that c ≈ 330 m/s, which tells us that our model is pretty good. The
assumption that we made was that the process was adiabatic, adding in the factor γ. This is a good
assumption because we’re saying that the disturbance is happening very fast, so the tube of gas
isn’t able to exchange heat with the outside.

If we use the ideal gas law:
PV = nRT

If we insert this into c:

c =
 
γ(nRT )
ρV

=
…
γRT

m

where m is the molar mass. We can see that the velocity of sound depends on temperature of the
gas. There is another thing we can do to the expression. If we again use the ideal gas law, written
as PV = NkT , where N is the number of molecules and k is the Boltzmann constant. This gives us

c =
 
γNkT

ρV
=
√
γkT
ρV
N

=
…
γkT

m

where m is the molecular mass. If we now square:

c2 = γ
kT

m

If we think about thermo, if we think about the 3 degrees of freedom translationally(x, y, z), each
one has energy 1

2kT , so the kinetic energy is given as 3
2kT . We can then set this equal to the mean

kinetic energy:
3
2kT = 1

2mv̄
2
rms

If we solve for kT :
kT = mv̄2

rms

3
If we put these together, we have that

c ≈ .7v̄rms

Let’s move back to the wave equation

∂2η

∂x2 = 1
c2
∂2η

∂y2

The solution to this will be the usual
η = η0e

i(ωt−kx)
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for right moving waves, and
η = η0e

i(ωt+kx)

for left moving waves. We also want to keep in mind the relationship between the excess pressure
and the wave:

P ′ = −Ba
∂η

∂x
= iBakη

For right moving, and is equal to −iBakη for left moving waves. Note that η and P ′ are 90 degrees
out of phase due to the i that is present in their relationship.

8.1.1 Energy in the Wave

We can compute the change in kinetic energy in the system ∆Ekin (per unit volume):

∆Ekin = 1
2ρη̇

2

We have that η = η0e
i(ωt−kx). If we compute η̇:

η̇ = iωη

Taking the real part of this:
Re(η̇) = −ωη0 sin(ωt− kx)

This gives us that
η̇2 = ω2η2

0 sin2(ωt− kx)

If we now average η̇2 over many wavelengths:

¯̇η2 = ω2η2
0

nλ

∫ nλ

0
sin2(2π

λ
(ct− x)) dx

This gives us that
∆Ekin = 1

2ρη̇
2

and that
∆Ēkin = 1

4ρω
2η2

0

We will assume that ∆Ēpot = ∆Ēkin, and as such:

∆Etotal = 1
2ρω

2η2
0

What about the energy flow? Energy flux is Ētotal × c. This tells us that the flux is:

Φ = 1
2ρω

2η2
0c

For sound waves, this is from about 10−12 Watts per square meter to 1 (Threshold of hearing, and
where things get painful). This is known as the intensity, I, and the threshold is known as I0.
Generally we use the logarithm scale of decibels, where we convert via 10 log10

I
I0
.
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8.1.2 Boundary Conditions

If one end of the tube is closed, let’s say the left end, we have that η(x = 0) = 0. If on the other
hand it is open, we have that P ′ = 0 at x = 0, which tells us that

−Ba
∂η

∂x
= 0→ ∂η

∂x
= 0

8.1.3 Doppler Effect

We have some wave source S, which is putting out waves in all directions. If we have an observer
some distance away from the source, and either the source begins to move or the observer begins
to move, we want to see what will happen. We know that wavelength if given by cT = c

ν . The
wavelength corresponds to the distance between two wavefronts/crests, or we can think of it via the
frequency (number of wavelengths in the distance travelled in 1 second).

The Doppler effect occurs when the wavelength changes as the source moves with some velocity vs:

λ′ = cT − vsT

c

ν ′
= c− vs

ν

For frequencies:
ν ′ = c

c− vs
In general, the Doppler effect states that

ν ′ = c

c± vs

If the observer is moving towards the source with some speed vo, we can just use relative velocities
and change our frame of reference, and we’ll see that

ν ′ = c+ vo
c

ν

If we generalize this to all cases, with both source and observer moving:

ν ′ = ν
c∓ vo
c± vs

We are assuming that c is the same in all cases. This tells us that frequency changes by motion of
the source and the observer, which is very important.

Let’s say we have a distant star, and we want to see whether the star is moving away from us/toward
us, and the speed at which it is moving. How can we know whether it is moving? Since stars
are mostly made of hydrogen and helium. This gives the star a spectrum, which we know the
wavelengths of. What we can do is take the hydrogen wavelength and notice that the pattern in the
star is shifted, either up or down in wavelength. If the wavelength is shorter, it is blueshifted, and if
it is shifted up, it is redshifted. Blueshifted stars are moving towards us, and redshifted stars are
moving away from us. Once we know how much they are shifted by, we can compute the velocity of
the star.
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Using this, we learned that the further away a star/galaxy is from Earth, the faster it moves away
from us, giving us the relationship v = Hr, where v is the velocity, H is Hubble’s constant, and r is
the distance from Earth. This showed that the universe was expanding.

We can also compute how hot the star is with the Doppler effect. If we have molecules in a gas,
temperature is a measure of the random motion of the molecules, and we characterize that as 1

2kT
times the number of degrees of freedom. This is equal to the kinetic energy:

1
2mv̄

2 = 3
2kT

We can then get the average velocity squared:

v̄2 = 3kT
m

Because sometimes the molecules are moving in random directions, sometimes the wavelength is
shifted either up or down. If we look at the width of the wavelength distribution, we can relate that
to the average velocity via the Doppler effect.

If we have a moving source where vs > c, we can see that we’ll have a cone created, where
sin θ = ct

vst
= c

vs
, where θ is the half angle of the cone. This is like what happens with fighter jets

breaking the sound barrier, where the cone is actually physicall visible.

9 Transmission Lines
Say we have two conductors separated by some nonconducting medium (dielectric). One common
example of this is a coaxial cable, which is just a cylinder which has a central conductor of radius
r1, and an external conductor with a radius r2. In between these conductors is insulating material.
We can put some voltage source in the system (a battery for example), and some sort of load, like a
resistor or a lightbulb. We can then put a switch that completes the circuit. If we close the switch
at t = 0, a voltage is applied across the conductor. How long will it take for the lightbulb to ’sense’
that there is some voltage?

We know that when we create a current in the conductor, we have a magnetic field being formed. We
then have some magnetic flux being generated by the B field by the gap between the two conductors.
We can think of this as an inductor:

ΦB = LI

Where L is the inductance, and is measured in Henry’s. If we plot the voltage as a factor of time,
we see we have a change from 0 to some V0, giving us some ∆V . This means that we have some ∆I,
and by Faraday’s Law:

ε = −dΦB

dt
= −LdI

dt
= ∆V

Note that this is in the case of a switch, where the voltage is instantly generated. If we have some
generator, we would have some sinusoidal generation of voltage. However, our work with Fourier
series tells us that we can model a step function with a sum of sinusoids.

On the other hand we can think of this as a capacitor, which has some electric field being generated:

q = CV

dq

dt
= C

dV

dt
= ∆I
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For a coaxial cable:
L0 = µ

2π ln
Å
r2
r1

ã
C0 = 2πε

ln
Ä
r2
r1

ä
Where L0 is the inductance per meter, and C0 is the capacitance per meter.

9.1 Wave Equation
Lets take our two conductors and break them up into small sections. Each section represents some
inductance ∆L = L0∆x, and a capacitance ∆C = C0∆x. Note that we are avoiding the inherent
resistances in the conductors, and assuming the insulator between the two is a perfect insulator.
We will ignore this for now, but we’ll come back to it. Remember that an LC circuit is an oscillator,
so we’re coupling a bunch of oscillators together. We can see the parallels to coupled springs, and
we will end up with a wave equation that describes this system.

Across a given inductor, when we have a change in the current, we have a change in the voltage
∆V . We can label each inductor by the position, the first being V (x, t), and the second being
V (x+ ∆x, t), and so on. We have some change in voltage in the section:

∆V = V (x+ ∆x, t)− V (x, t) = dV

dx
∆x

We also know that
∆V = −(L0∆x)dI

dt

Combining these two equations, we have

dV

dx
= −L0

dI

dt

Let’s try and connect the currents. We have a capacitor with a change in the current, taking some
of the current, giving us some −∆I (negative since the capacitor is taking the current). We end up
having

∆I = I(x+ ∆x, t)− I(x, t) = dI

dx
∆x

And we have that
−∆I = dq

dt
= C0∆xdV

dt

Putting these two together:

−dI
dx

= C0
dV

dt

We now have two equations for the system, one given via inductance and the other given via the
capacitance.

If we take a derivative with respect to x of dVdx :

d

dx

dV

dx
= −L0

d2I

dx dt
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Which gives us
d2V

dx2 = −L0
d2I

dx dt

We can instead take the derivative with respect to time of the first equation, giving us

− d2I

dxdt
= C0

d2V

dt2

We can insert this into the second equation:

d2V

dx2 = C0L0
d2V

dt2

This is in the same form as the wave equation, giving us that c2 = 1
C0L0

:

d2V

dx2 = 1
c2
d2V

dt2

This means that if we generate a change in the voltage at one point in the transmission line, the
change in the voltage will set off an electric field and a magnetic field, which will travel as if they
were waves, and the speed of this wave is given by

»
1

L0C0
.

Lets look at a coaxial cable. We have equations for L0 and C0:

L0 = µ

2π ln
Å
r2
r1

ã
C0 = 2πε

ln
Ä
r2
r1

ä
We know that µ = µ0µr, and that ε = ε0εr, where µr and εr are material dependent. From these,
we get that

c2 = 1
L0C0

= 1
µ0ε0(εrµr)

Giving us that
c = 1
√
µ0ε0

In air, the speed is about the speed of light.

9.2 Impedance
We now want to find what the impedance of the transmission line is. We define it to be

Z = V (x, t)
I(x, t)

This has units of Ohms. Why do we call this impedance rather than resistance? We do this because
this ratio isn’t that simple, because it has an amplitude and phase, because V and I are complex
valued. Before we can see what values these take, we need to find what the solutions of this system
are.

d2V

dx2 = 1
c2
d2V

dt2
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We can write the solutions in the form

V+ = V0e
i(ωt−kx)

We also have the other equation:
I+ = I0e

i(ωt−kx)

Note that this is for right moving transmissions/waves (Hence the plus signs). To compute the
impedance, we can just use the relationship

dV

dx
= −L0

dI

dt

and just take the derivatives of our general solutions and plug in:

−kV0 = −L0Iω

Z0 = V0
I0

= L0ω

k
= L0c =

 
L0
C0

This value Z0 is known as the characteristic impedance of the transmission line.

Let’s look at a left moving wave, V−, I−. The characteristic impedance is given by

Zc = V−
I−

Using the equation
dV

dx
= −L0

dI

dt

And the definitions of V− and I−:
V− = V0e

i(ωt+kx)

I− = I0e
i(ωt+kx)

We end up with Zc = −
»

V0
I0
. Note that this value is negative. Now lets look at the characteristic

impedance of a coaxial cable. Remember that we have a center conductor of radius r1, and an
outer conductor of radius r2. Using the expressions we had for L0 and C0 for a coaxial cable, and
assuming that µ = µ0 and ε = εrε0, we end up with

|Zc| =
 
L0
C0

= 1
2π

…
µ

ε
ln(r2

r1
)

For a typical coaxial cable at home, |Zc| = 50Ω. To find the velocity of the travelling wave, we use
the relationship

c = 1
√
µε

= 1
√
µ0ε0

1
√
εr

Let’s put a load on the transmission line, like a resistor or a lightbulb. This adds some external
load/impedance, ZL. If we have a wave V+ = V0e

i(ωt−kx), we’ll have some reflected wave V− =
V ′0e

i(ωt+kx). Our voltage will be V = V+ + V−, and our current will be I = I+ + I−. The ratio
between these two, VI , must be equal to ZL, leading us to a system of equations

V−
I−

= −Z0
V+
I+

= Z0
V+ + V−
I+ + I−

= ZL
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This gets us that
V−
V+

= ZL − Z0
ZL + Z0

Note that in the case where ZL = Z0, V− = 0, which means that there is no reflected wave.

The impedance at a different location in a transmission line will depend on x:

Z(x) = V+(x) + V−(x)
I+(x) + I−(x)

If the external load is 0, ZL = 0, we see that

V−
V+

= −1

Which tells us that V− = −V+, and V = V+ + V− = V0e
i(ωt−kx) − V0e

i(ωt+kx). This gives us that
V = 2V0 sin(kx) sin(ωt). We can do the same thing with the current, where we notice that I−

I+
= 1,

giving us that I = 2I0 cos(kx) cos(ωt). From this, we can use P = IV to get that

P = V0I0 sin(kx) cos(kx) sin(ωt) cos(ωt)

Notice that the average power in this expression will be 0.

9.3 Imperfect Conductors/Insulators
So far we have worked with ideal conductors and insulators, but in the real world we have some
small resistance R0 in the conductors, and some conductance G0 in the insulator, where G0 = 1

Rc
.

This gives us new equations:
dV

dx
= −L0

dI

dt
−R0I

dI

dx
= −C0

dV

dt
−G0V

These are just the ideal equations with the addition of Ohm’s law in the voltage and Kirchoff’s
Loop laws in the case of the current. We can then do what we did before, giving us a new diffeq:

d2V

dx2 = L0C0
d2V

dt2
+ (L0C0 +R0C0)dV

dt
+R0G0V

We can see that this is the ideal wave equation with extra damping terms, and this will have a
damped solution:

V = Ae−γxeiωt

or
V = Aeγxeiωt

We know that γ is complex, and so we can split it:

γ = α+ ik

which gives us
V = Ae−αxei(ωt−kx)

If we let R0 = 0 and G0 = 0, we expect to see the same results as in the ideal situation. Indeed, if
we solve for α, we see that α = 0, which drops the exponential term.
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9.4 Low Loss Lines
Can we have a low loss transmission line? Looking at the equation:

γ = [(R0 + iωL0)(G0 + iωC0)]
1
2

Factoring:

γ =
»

(iωL0)(iωC0)
ïÅ

1 + R0
iωL0

ãÅ
1 + G0

iωC0

ãò 1
2

For R0
ωL0
� 1, and G0

ωC0
� 1, we can ignore the cross terms, and we are left with

iω
√
L0C0

ï
1− i

Å
R0

2ωL0
+ G0

2ωC0

ãò
Where we’ve done a Taylor expansion. Separating the real and imaginary terms:

γ = ω
√
L0C0

Å
R0

2ωL0
+ G0

2ωC0

ã
+ iω

√
L0C0

Once again letting γ = α+ ik:

α =
√
L0C0

Å
R0
2L0

+ G0
2C0

ã
k = ω

√
L0C0 = ω

c

It can also be show that the characteristic impedanc eof a lossy transmission line is givne by

Z0 =
 
R0 + iωL0
G0 + iωC0

= V+
I+

Note that this is for a right moving wave, and the characteristice impedance for a left moving wave
would be the negative of this.

10 Electromagnetic Waves
10.1 Reminder of Vector Calculus

Remember that we have the ∇ operator:

∇ = ∂

∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ

Remember the definition of the gradient:

∇f(x, y, z) = ∂f

∂x
x̂+ ∂f

∂y
ŷ + ∂f

∂z
ẑ

And the divergence:
∇ · ~A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

And finally the curl:

∇×A =
Å
dAz
dy
− dAy

dz

ã
x̂+
Å
dAz
dx
− dAx

dz

ã
ŷ +
Å
dAy
dx
− dAx

dy

ã
ẑ
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And the Laplacian:

∇2A = ∇(∇ ·A)−∇× (∇×A)

We also have a lot of vector identities that are very useful (like the curl of the curl of a function).
We also need to remember some important theorems that connect integrals:∫ b

a
(∇f) dl = f(b)− f(a)

∫
(∇ ·A) dV =

∮
A · da∫

(∇×A) · da =
∮
A · dl

10.2 Maxwell’s Equations
Let’s start with the Maxwell’s equations.

Gauss’s Law: ∫
E · dA = QE

ε0
→ ∇ · E = ρE

ε0

Gauss’s Law for magnetism: ∫
B · dA = 0→ ∇ ·B = 0

Faraday’s Law of induction:

dE · dl = −dΦB

dt
→ ∇× E = −dB

dt

and Ampere’s Law: ∫
B · dl = µ0ε0

dΦE

dt
+ µ0IE → ∇×B = µ0ε0

dE

dt
+ µ0JE

10.3 Deriving the Wave Equation
Let’s now use these equations and try to derive the wave equation for EM waves. We want to
do these in free space. In free space, ρE = 0 (no free charges) and JE = 0 (no current density).
Maxwell’s equations then become

∇ · E = 0 ∇ ·B = 0 ∇× E = −dB
dt

∇×B = µ0ε0
dE

dt

We can take the third equation, and take the curl of it (using a vector identity):

∇× (∇× E) = ∇(∇ · E)−∇2E = −∇× (∂B
∂t

)

The first term is 0, by Gauss’s law:

−∇2E = − d

dt
(∇×B) = − d

dt

Å
µ0ε0

dE

dt

ã
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We are then left with

∇2E = µ0ε0
d2E

dt2

This looks like a wave equation. We then have that c2 = 1
ε0µ0

:

∇2E = 1
c2
d2E

dt2

By the definition of the Laplacian:

∇2Ex = 1
c2
d2Ex
dt2

∇2Ey = 1
c2
d2Ey
dt2

∇2Ez = 1
c2
d2Ez
dt2

We can also show from Maxwell’s equations that

∇2B = 1
c2
d2B

dt2

via a similar process.

Looking at the wave equation, we have that c = 1√
µ0ε0

. For a medium where ε = εrε0 and µ = µrµ0,
we have that

cmedium = 1
√
µε

and the index of refraction is given by

n = c

cmedium
=
…

µε

µ0ε0

For dielectrics, like a piece of plastic or glass, µ ≈ µ0, giving us that n = ε
ε0
.

10.4 Solution to the Equation
Let’s consider Ex:

∂2Ex
∂x2 + ∂2Ex

∂y2 + ∂2Ex
∂z2 = 1

c2
∂2Ex
∂t2

We have a solution Ex = Ex0 e
i(~k·~r−ωt), where ~k · ~r = kxx+ kyy + kzz:

Ex = Ex0 e
i(kxx+kyy+kzz−ωt)

Note that this is the equation of a right moving wave, and the equation of a left moving wave would
have a positive ωt. This same solution works for Ey and Ez, with the same frequency and velocity.
If we enter Ex into the wave equation, we’d be left with

k2
x + k2

y + k2
z = ω2

c2

We see that the left side is the magnitude of ~k squared, and the right side is the square of the wave
number, which tells us that we have exactly the same relationship:

ω2

k2 = c2
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And this is the same behavior for Ey and Ez. All of this behavior also applies for B.

So far we have seen that we can have waves of the form

E = E0e
i(k·r−ωt) B = B0e

i(k·r−ωt)

We can learn more from Maxwell’s equations. We know that

∇ · E = 0 ∇ ·B = 0 ∇× E = −dB
dt

∇×B = µ0ε0
dE

dt

Looking at the first equation:

∇ · E = 0→ ikxEx + ikyEy + ikzEz = ~k · E = 0→ E ⊥ ~k

We see that our electric field is normal to the direction of propagation. We also know that

∇ ·B = 0→ ikxBx + ikyBy + ikzBz = ~k ·B = 0→ ~k ⊥ B

We see that the magnetic field is also normal to the direction of propagation. We have transversely
polarized waves. We now want to find the relationship between the electric field and the magnetic
field, so we want to use the fact that

∇× E = −∂B
∂tÅ

dEz
dy
− dEy

dz

ã
x̂+
Å
dEz
dx
− dEx

dz

ã
ŷ +
Å
dEy
dx
− dEx

dy

ã
ẑ = −dB

dt

If we do this all out, we have that

i(~k × E) = −iωB → ~k × E = ωB

This tells us that E ⊥ B, and B = E
c .

10.5 Poynting Vector and Energy Density
We have a Poynting vector ~S:

~S = 1
µ0
E ×B

This points in the direction of ~k, the direction of propagation.

Energy density is given by E = 1
2ε0E

2 + 1
2

1
µ0
B2. If we take the derivative of this:

∂E
∂t

= ε0E
dE

dt
+ 1
µ0
B
dB

dt

By Maxwell’s Equations:

∂E
dt

= ε0E

Å 1
µ0ε0
∇×B

ã
+ 1
µ0
B(−∇× E)

We can then rewrite this:

∂E
∂t

= 1
µ0

[E · (∇×B)−B(∇× E)] = 1
µ0
∇ · (B × E)
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We have seen that
dE
dt

= 1
µ0
∇ · (B × E)

If we take the integral of this over a volume:∫
V

dE
dt
dV = 1

µ0

∫
∇ · (B × E) dV

This second integral is (from vector calculus) a surface integral:∫
∇ · (B × E) dV =

∮
B × E dA

We can then rewrite the rate of change of energy:∫
dE
dt
dV = dw

dt
= 1
µ0

∮
(B × E) dA

where w is the energy. This means that the energy flow per unit area per unit time (the energy
flux) is given by the Poynting vector:

S = 1
µ0

(E ×B)

Also note that often we refer to the magnetic field via H, where

H = B

µ

And we can also use D to refer to the electric field:

D = εE

10.6 Proof of Momentum
Let us now look at the fact that EM waves impart momentum when they collide with things. This
is a hand-wavy proof because we don’t know the necessary math. Let’s have an EM wave moving in
the ẑ direction, with ~k ∝ (E ×B). We have some E field in the direction of x̂, and a B field in the
ŷ direction. If we have an electric charge q sitting at the origin, we have certain forces on it:

F = q(E + v ×B)

The work done to the charge by the two fields will be

dW = F · d~r = qEx dx

We have no work done by the B field because v ×B is normal to d~r. We can then use Newton’s
Law:

dpz
dt

= F

Note that we’re only interested in the change in momentum in the same direction of the wave (in
this case the ẑ direction). If we had the particle moving in the x̂ direction:

dpz
dt

= q(vx ×By)
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Which gives us that

dpz = qvxBy dt

= qvx
Ex
c
dt

= q
Ex
c
vxdt

= q
Ex
c
dx

Recalling that dw = qEx dx, we see that

dpz = dw

c

This tells us that the change in the momentum in the direction of propagation is the amount of
work done divided by c. In relativity, there is the dispersion relation, which relates E and p:

E2 = m2c4 + p2c2

where m is the mass of the particle. If we have that p = E
c , we have that m = 0. We have just

discovered that EM waves (photons) have no mass, but can impart momentum.

10.7 Waves Changing Mediums
If we have a boundary between two mediums, what happens when a wave travels from one of the
mediums to another. Let’s first write Maxwell’s equations for a medium (recalling that D = εE and
H = B

µ ):
∇ · E = ρ

ε0
→ ∇ ·D = ρ

∇ ·B = 0

∇× E = −dB
dt

∇×B = µ0ε0
dE

dt
+ µ0J → ∇×H = dD

dt
+ J

We now have to think about the boundary conditions. We have done similar things with waves in
strings, with parts of the wave transmitting through, and parts of the wave being reflected back.
We also associated this with a property known as the impedance. We want to do something similar
in this situation. We want to look at a narrow surface around the boundary. Maxwell’s equations
tell us that ∮

E · dl = −dΦB

dt

We know that the flux goes to 0 as dx→ 0. We have two bands for the surface, E1
|| and E

2
||:

E1
||l − E

2
||l = 0

This tells us that E1
|| = E2

||.

We can apply the same argument for
∮
H · dl = εdΦE

dt + I. What about the transverse component?
We can once again create a surface, and we can use the equation∫

D ·A = ρ = 0
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This gives us
D1
⊥∆A−D2

⊥∆A = 0

Giving us that
ε1E

1
⊥ = ε2E

2
⊥

We can then use the same method for
∮
B ·A = 0, which gives us that

B1
⊥ = B2

⊥

To sum up, we have used Maxwell’s equations at the boundary with no free current, we have that
the parallel components of the electric field has to be continuous, the perpendicular component is
proportional to the ratio between the εs. For the magnetic field, the perpendicular components are
continuous, and the parallel components are proportional by a ratio of the µs. This sets us up to
derive Snell’s law, and we can then talk about why metals are shiny, why they’re conductive, and
talk about what happens when we put EM waves inside a hollow conductor (waveguides).

10.8 Waves in Conductors
We know that in a conducting medium, σ 6= 0, and in an insulator σ = 0. In a perfect conductor,
σ =∞. Let’s talk about how EM waves interact with conductors, and why conductors have these
certain properties. By Maxwell’s Laws:

∇×H = dD

dt
+ J

Writing this out:
∇×H = E dE

dt
+ σE

Now taking a time derivative:
d(∇×H)

dt
= E d

2E

dt2
+ σ

dE

dt

The left side then becomes
∇× dH

dt
= 1
µ
∇× dB

dt

By some vector calc identities:
= − 1

µ
(∇(∇ · E)−∇2E)

This first term is 0 because we have no free charges:

= 1
µ
∇2E

Putting this into the equation, we have that

∇2E = Eµ d
2

dt2
+ µσ

dE

dt

Which gives us

∇2E = 1
c2
d2E

dt2
+ µσ

dE

dt
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Thinking intuitively, we see that the second term leads to damping, and will lead to an imaginary
portion in the ~k vector. We see that a conductor is something that applied damping, which makes
sense.

Take for example a wave propagating in the ẑ direction with ~B pointing in the ŷ direction. Writing
out the Laplacian in the wave equation, we see that the first two terms are zero, leaving us with

d2Ex
dx2 = µE d

2Ex
dt2

+ µσ
dEx
dt

This has solution Ex = E0e
iωte−γz, where

d2Ex
z2 = (−µEω2 + µσω)Ex

where the portion in parentheses is known as γ2.

We have that
d2Ex
dz2 − γ

2Ex = 0

For a very good conductor:
σ > Eω → γ2 = µωσi

Which gives us that
γ = (µωσ)1/2√i

Where
√
i = 1+i√

2 . Placing this back into the solution:

Ex = E0e
−(µσω2 )1/2zei(ωt−

µσω
2 )1/2z)

This gives us that

k =
(ωµσ

2

) 1
2

This is called attenuation. Using this, we can find the phase velocity:

vp = ω

k
=
Å2ω
µσ

ã1/2

The group velocity is the speed of propagation of energy:

vg = dω

dk
= 1

dk
dω

We have previously said that the impedance in free space or in a medium is given by

Z =
…
µ

E

In the case of this plane wave, this is the same as

Z = Ex
Hy
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What is the impedance when in a conducting medium?

Ex = E0e
iωte−γz

Hy = H0e
i(ωt−φ)e−γz

∇× E = −dB
dt

= −µdH
dt

We have that
dEx
dz
− dEz

dx
= −µdHy

dt

Keeping only the y terms:
dEx
dz

= −µdHy

dt

Which gives us
Z = Ex

Hy
= iωµ

γ

This is a complex value, due to the i and γ:

Z = iωµ

(1 + i)
(ωµσ

2
)1/2 =

(ωµ
σ

)1/2
ei
π
4

We can see that if σ →∞, Z → 0. Another interesting thing is that a perfect conductor is also a
perfect reflector, as we can show that as σ →∞, then | ItIr | → 0.

10.9 Waveguides
Let’s now talk about wave guides, where waves are propagating through a hollow conductor, such
as a metal pipe (in this case the pipe has a rectangular crosssection, and is a tall and b wide.). The
wave’s behavior is governed by Maxwell’s equations and boundary conditions. We assume that the
waveguide is a perfect conductor:

E = 0 B = 0

When inside the conductor. We also know from boundary conditions that E|| = 0 and B⊥ = 0 right
at the surface. We then have

~E(x, y, z) = ~E0(y, z)ei(kx−ωt)

And
~B(x, y, z) = ~B0(y, z)ei(kx−ωt)

Where
~E0 = E0

xx̂+ E0
y ŷ + E0

z ẑ

and similarly for ~B0. Now using Maxwell’s equations:

∇× E = −dB
dtÅ

dEz
dy
− dEy

dz

ã
x̂+
Å
dEx
dz
− dEz

dx

ã
ŷ +
Å
dEy
dx
− dEx

dy

ã
ẑ = iω(Bxx̂+Byŷ +Bz ẑ)

We can now equate each term to the corresponding term on the other side. This then leaves us with

dEz
dy
− dEy

dz
= iωBx

dEx
dz
− ikEz = iωBy ikEy −

dEx
dy

= iωBz
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We can do the same for ∇ × B = 1
c2
dE
dt , and we follow the same procedure, that leads us to 3

equations:

dBz
dy
− dBy

dz
= − iω

c2 Ex
dBx
dz
− ikBz = − iω

c2 Ey ikBy −
dBx
dy

= − iω
c2 Ez

We can now take these 6 equations that we have, and solve for Ey,Ez, By, and Bz in terms of Ex
and Bx:

Ey = i(
ω
c

)2 − k2

ï
k
dEx
dy

+ ω
dBx
dz

ò
Ez = i(

ω
c

)2 − k2

ï
k
dEx
dz
− ωdBx

dy

ò
By = i(

ω
c

)2 − k2

ï
k
dBx
dy
− ω

c2
dEx
dz

ò
Bz = i(

ω
c

)2 − k2

ï
k
dBx
dz

+ ω

c2
dEx
dy

ò
If Ex = 0 and Bx = 0, we can immediately see that nothing travels, all the terms go to 0. This
is called transverse EM (TEM), where there is no travelling wave in the waveguide. We can only
have either transverse electric waves (TE waves), where Ex = 0 and Bx 6= 0; or transverse magnetic
waves (TM waves), where Bx = 0 and Ex 6= 0.

We must also recall that E and B must satisfy:

∇ · E = 0 ∇ ·B = 0

This will give us two different wave equations:

d2Ex
dy2 + d2Ex

dz2 +
ï(ω

c

)2
− k2
ò
Ex = 0

d2Bx
dy2 + d2Bx

dz2 +
ï(ω

c

)2
− k2
ò
Bx = 0

So for a TE wave, we set Ex = 0, and we want to find Bx. This will completely determine the wave.
We know that Bx is a function of y and z, and we have no easy way of solving for it. We can assume
that it is made up of a product of two functions (this is separation of variables):

Bx(y, z) = Y (y)Z(z)

We can then plug these in:

d2Ex
dy2 + d2Ex

dz2 +
ï(ω

c

)2
− k2
ò
Ex = 0

Turns into
Z
d2Y

dy2 + Y
d2Z

dz2 +
ï(ω

c

)2
− k2
ò
Y Z = 0

We can then divide by Y Z:

1
Y

d2Y

dy2 + 1
Z

d2Z

dz2 +
ï(ω

c

)2
− k2
ò

= 0
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We see that the first term only depends on y, the second term only depends on z, and the third
term is a constant. Each of the terms is independent of the rest, so we can claim that the only way
we can satisfy this for all values of z and y is that each of the terms are constant (you can think
about this by setting one to a constant and seeing that it can only be satisfied if the other one also
remains constant). This means that we can create two different equations now:

1
Y

d2Y

dy2 = −k2
y

1
Z

d2Z

dz2 = −k2
z

This leaves the original equation as

−k2
y − k2

z +
ï(ω

c

)2
− k2
ò

= 0

These two subequations that we made are just like oscillator equations:

Y = A sin(kyy) +B cos(kyy)

Z = A′ sin(kzz) +B′ cos(kzz)

What about the boundary equations? We know that B⊥ = 0, which tells us that By = 0 (at y = 0
and y = a) and Bz = 0 (at z = 0 and z = b). We cna then plug these into the 4 equations we had,
and we see that where By = 0, dBxdy = 0, and where Bz = 0, dBxdz = 0. This then tells us that

A cos(kyy)−B sin(kyy) = 0

Which then tells us that A = 0, which implies that dBx
dy (at y = a) is also 0, telling us that kY a = nπ,

telling us that ky = nπ
a . Replicating this for dBx

dz = 0, giving us that kz = mπ
b .

This gets us that
Bx(y, z) = C sin(nπ

a
y) sin(mπ

b
z)ei(kx−ωt)

We also know that

k =
 (ω

c

)2
− π2

Å
n2

a2 + m2

b2

ã
Note that if we want real valued k, we need ω > cπ

»
n2

a2 + m2

b2 . We see that the waveguide will only
allow waves with this property, as lower frequencies will diminish (just plug in a complex k, and we
see that the exponential term gets absorbed). The lowest acceptable frequency can be achieved if
a > b, where ω = cπ 1

a (n = 1, m = 0). Looking at the phase velocity at an arbitrary frequency:

vp = ω

k
= c√

1− ωnm
ω

Looking at the group velocity:

vg = dω

dk
= c

…
1−

(ωnm
ω

)2
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11 Wavefunctions
So far we have seen different types of wave equations. Wave equations give us the functions for the
wave disturbance (y, E, B, etc.). What counts at the end is the energy flow, which is proportional
to the magnitude of the disturbance squared. Let’s now generalize the disturbance to any type of
wave (could be y, E, etc.). We call the disturbance ψ(x, y, z), and the intensity is ∝ |ψ|2.

Let’s now try to get the intensity as a function of the distance from the source. Let’s say we have a
point source and a 3 dimensional wave propagating from the source spherically. What can we say
about the intensity relative to the distance from the source? Well we know that the energy put out
is conserved, so the total energy is given by

Etotal =
∫
|ψ(r)|2 dA

where r is the distance and A is the surface area of the sphere. We can see that ψ only depends on
r:

E = |ψ(r)|2
∫
dA = 4πr2|ψ(r)|2

We know that E is a constant, so
|ψ(r)|2 ∝ Etotal

4πr2

Which tells us that
ψ(r) ∝ 1

r

What about if we have a cylindrical source (a very long cylinder). We can create a cylinder around
it (with radius r). We once again see that the total energy is a constant:

Etotal =
∫
|ψ(r)|2 dA

Since we have a very long cylinder, we can claim symmetry so ψ will only depend on r, and thus is
a constant in the integral:

Etotal = |ψ(r)|2
∫
dA = |ψ(r)|2(2πrl)

We see that
|ψ(r)|2 = Etotal

2πrl → ψ(r) ∝ 1√
r

Note that if we block the source of a wave after the propagation begins, the wave will not be
completely blocked because the wave has propagated to other locations, and those locations now
affect other locations. We can think of this like generating a disturbance in a pond with an obstacle
somewhere in the pond. You will see that there will still be waves generated/propagating through
the areas that are beyond the obstacle.

This leads us into what is known as Huygen’s Principle, which states that each point on a wave
front acts as a source of new wave fronts (wavelets), and each wavefront is tangent to the surface of
the new wavelets.

Fresnel added an additional statement that solved the issue of the wavelets going backwards into
the source, where the wavelets have a cosine term:

ψ(r) = e−ikr

r
(cos θ + 1)
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11.1 Double Slit Experiment
We want to take a distant source and two screens, the first of which has 2 slits in it and the second
one with no slits (and is a distance D away from the first screen). The distance between the two slits
is d. We assume that the slits are small relative to the wavelength of the emitted waves. Huygen’s
principle tells us that when a wave reaches one of the slits, it produces a new wave, ψ1 ∝ 1√

r1
, and

similarly for the other slit, ψ2 ∝ 1√
r2
. Note that the slit is not a simple hole, but rather a cylindrical

cutout (hence the
√
r). We will work in the far-field limit, which is when D � d. We have the total

generated wave at some point P on the second screen:

ψ(r) = ψ(r1) + ψ(r2)

ψ(r) = a
√
r1
ei(kr1−ωt) + a

√
r2
ei(kr2−ωt)

We will say that AP = a√
r1
≈ a√

r2
(due to the far-field limit). Also note that the rays from the

slits to the point P are both parallel due to the approximation that we are using, giving us that
r2 − r1 = d sin θ. Even though we can ignore the difference in amplitude between r2 and r1, we
can’t ignore the difference in phase, because the difference r2 − r1 in the phase makes a pretty big
difference. We are left with

ψ(P ) = AP e
−ωteik( r1+r2

2 )
[
eik( r1−r22 ) + e−ik( r1−r22 )

]
Which becomes

ψ(P ) = 2AP cos(kr1 − r2
2 )eik( r1+r2

2 −ωt)

The amplitude of this:

APtotal = 2AP cos(kd sin θ
2 ) = 2AP cos(πd sin θ

λ
)

We have a property of coherence, which is making sure that thelight coming out of slit 1 and slit 2
have constant phases throughout the propagation (they dont have to be the same, but they should
produce constant phases). This is why we put in only 1 source, so the light reaching the two slits is
from the same source.

We have that
Atot(θ) = A(θ) cos

Å
kd sin θ

2

ã
Normally we are interested in the intensity relative to θ = 0, i.e how the wave changes from the
center of the slit as we move towards where the light strikes the second screen:

Atot(θ)
Atot(0) = A(θ)

A(0) cos
Å
kd sin θ

2

ã
Comparing the intensities:

I(θ)
I(0) =

∣∣∣∣A(θ)
A(0)

∣∣∣∣2 cos2
Å
kd sin θ

2

ã
Essentially,

I(θ)
I(0) ∝ cos θ cos2

Å
kd sin θ

2

ã
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Using the diagram of the experiment, we can see that this turns into

I(θ)
I(0) = D√

x2 +D2
cos2
ï
π

λ

Å
dx√

x2 +D2

ãò
This causes the creation of fringes as we approach the screen. If we do some more approximations,
we see that for small θ or small x

D , it turns into

I(θ)
I(0) = cos2

(π
λ
dθ
)

= cos2
Å
π

λ

dx

D

ã
11.2 N-slit Interference

If we have N slits separated by a distance of d, and the second screen a distance D away. The
overall result of the waves from all of the slits becomes:

ψ(θ) =
N∑
n=1

ψn(θ) =
N∑
n=1

A(θ)ei(krn−ωt)

We now make the approximation that r1 ≈ r2 ≈ r3 · · · ≈ rn (but only in the amplitude, not in the
phase):

ψ(θ) = A(θ)ei(kr1−ωt)
N∑
n=1

eik(rn−r1)

We call the quantity
∑n
n=1 e

ik(rn−r1) φ. We have that

φ =
N∑
n=1

eik(rn−r1)

We know that rn − r1 = (n− 1)d sin θ:

φ =
N∑
n=1

eik(n−1)d sin θ

If we have a quantity z = eikd sin θ:

φ =
N−1∑
n=0

zn = zN − 1
z − 1 = eiNdk sin θ − 1

eikd sin θ − 1

Factoring this:

φ = eik(N−1) sin θ sin(Nkd sin θ
2 )

sin(kd sin θ
2 )

Plugging this back into the definition of ψ:

ψ = A(θ)
sin(Nkd sin θ

2 )
sin(kd sin θ

2 )

[
e
ik(N−1)d sin θ

2 ei(kr1−ωt)
]

Looking at the relative intensity (where we’ve set α = kd sin θ):
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I(θ)
I(0) =

∣∣∣∣A(θ)
A(0)

∣∣∣∣2 ∣∣∣∣φ(θ)
φ(0)

∣∣∣∣2
= 1
N2 |

A(θ)
A(0) |

2

∣∣∣∣∣sin Nα
2

sin α
2

∣∣∣∣∣
2

We have the function
1
N2 |

A(θ)
A(0) |

2

∣∣∣∣∣sin Nα
2

sin α
2

∣∣∣∣∣
2

We see that this is a periodic function, and we know that
Nα

2 = mπ

From this, we see that if both the numerator and the denominator of the second term approach 0,
we are left with

I(θ)
I(0) =

∣∣∣∣A(θ)
A(0)

∣∣∣∣2
Which gives us maxima. Looking at a plot of this function, we see that where θ is a multiple of 2π,
we have constructive interference of all the slits. If just the numerator is 0, we have that

α = 2πm
N

, = 1, 2, . . . , N − 1

This provides the locations of the minima. Note that the number of minima in between each
maximum is given by N − 1, and the larger the N the lower the size of the minima. When we take
the case where N →∞, the local minima vanish, and the maxima become extremely sharp. This
leads into the resolving power of our interferometer. We can derive the resolving power of an N -slit
interferometer:

d sin θ = mλ

Making both sides differentials:
∆(d sin θ) = m∆λ

And now rewriting:
∆θ = m

d
∆λ

This is one relationship that we have. We also have the relationship

∆α = ∆(2π
λ

sin θ) = 2π
N

This then leaves us with
∆θ = λ

Nd cos θ
Setting the two expressions for ∆θ together, we have that

m∆λ
d cos θ = λ

Nd cos θ
We then find that

λ

∆λ = mN

This is the resolving power of the N -slit interferometer. For best separation, we need large N and
at high orders.
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11.3 Diffraction
Diffraction occurs when we have a wider slit, and we don’t just have a single wave coming in, we
have many. We’ll now need to integrate all wavelets to get the sum at some point P on the second
screen. An easy solution is to use what we just had and take N →∞ and let the slit separation
increase, turning it into one big wide slit. If we plug in the situation, we see that we are left with

I(θ)
I(0) =

∣∣∣∣∣sin β
2

β
2

∣∣∣∣∣
2

where β = ka sin θ. This then leaves us with:

sin θ = λ

a

This is the half-width of the diffraction profile.

We can also use the Huygen’s principle and do a formal derivation. Any wave coming from the slit
is given by

ψ(r) = 1
r
ei(kr−ωt)

The wave at some point P on the second screen (once again saying that it is far enough that the
lines are parallel):

ψP =
∫ Å1

r
ei(kr−ωt)

ã
C(y) dA

where C(y) is the intensity. Rewriting this (using the fact that kr = k(r0 − y sin t), and in the case
where C(y) is a constant c, and finally that 1

r ≈
1
r0
):

ψP (r) = CL

r0
ei(kr0−ωt)

∫ a
2

−a2
e−iky sin θ dy

Where L is the length of the slit. Compressing the constants into one factor G:

= G
1

ik sin θ
Ä
e−

ika sin θ
2 − e

ika sin θ
2
ä

This then leaves us with
−2Ga2

ñ
sin ka sin θ

2
ka sin θ

2

ô
Recall that we called β = ka sin θ, and I ∝ |ψ|2 ∝

∣∣∣∣ sin β
2

β
2

∣∣∣∣2. We see that we get the same thing we
did before.

Now lets talk about the effect of diffraction on interference patterns. The diffraction actually
"smears" the interference patterns, and as the slit gets smaller a→ 0, the effect of the smear actually
increases. Instead, we need to increase a to decrease the diffraction effects, but that starts interfering
with some of our assumptions. What we can do is increase λ as well, and that will help decrease
the effect of the diffraction on the interference pattern.

Let’s say we have a rectangular slit. If we take a arbitrary point on the surface of the aperture r′:

ψP (r) = G

∫∫
e−i(kr̂·r

′) dA
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We are using the technique that we did for a single wide slit, and expanding it via a double integral
over the area. If we do this integral out, we see that we are left with

= G

Ç
sin α

2
α
2

å2Çsin β
2

β
2

å2
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